Spaces:
Running
on
Zero
Running
on
Zero
| import gradio as gr | |
| import numpy as np | |
| import random | |
| import torch | |
| import spaces | |
| from PIL import Image | |
| from diffusers import FlowMatchEulerDiscreteScheduler | |
| from optimization import optimize_pipeline_ | |
| from diffusers import QwenImageEditPlusPipeline, QwenImageTransformer2DModel | |
| # from qwenimage.pipeline_qwenimage_edit_plus import QwenImageEditPlusPipeline | |
| # from qwenimage.transformer_qwenimage import QwenImageTransformer2DModel | |
| # from qwenimage.qwen_fa3_processor import QwenDoubleStreamAttnProcessorFA3 | |
| import math | |
| from huggingface_hub import hf_hub_download | |
| from safetensors.torch import load_file | |
| from PIL import Image | |
| import os | |
| import gradio as gr | |
| from gradio_client import Client, handle_file | |
| import tempfile | |
| # --- Model Loading --- | |
| dtype = torch.bfloat16 | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| # Scheduler configuration for Lightning | |
| scheduler_config = { | |
| "base_image_seq_len": 256, | |
| "base_shift": math.log(3), | |
| "invert_sigmas": False, | |
| "max_image_seq_len": 8192, | |
| "max_shift": math.log(3), | |
| "num_train_timesteps": 1000, | |
| "shift": 1.0, | |
| "shift_terminal": None, | |
| "stochastic_sampling": False, | |
| "time_shift_type": "exponential", | |
| "use_beta_sigmas": False, | |
| "use_dynamic_shifting": True, | |
| "use_exponential_sigmas": False, | |
| "use_karras_sigmas": False, | |
| } | |
| # Initialize scheduler with Lightning config | |
| scheduler = FlowMatchEulerDiscreteScheduler.from_config(scheduler_config) | |
| pipe = QwenImageEditPlusPipeline.from_pretrained("Qwen/Qwen-Image-Edit-2509", | |
| scheduler=scheduler, | |
| torch_dtype=dtype).to(device) | |
| pipe.load_lora_weights( | |
| "lightx2v/Qwen-Image-Lightning", | |
| weight_name="Qwen-Image-Lightning-4steps-V2.0.safetensors", adapter_name="fast" | |
| ) | |
| pipe.load_lora_weights( | |
| "dx8152/Qwen-Image-Edit-2509-Fusion", | |
| weight_name="溶图.safetensors", adapter_name="fusion" | |
| ) | |
| pipe.set_adapters(["fast", "fusion"], adapter_weights=[1.,1.]) | |
| pipe.fuse_lora(adapter_names=["fast"]) | |
| pipe.fuse_lora(adapter_names=["fusion"]) | |
| pipe.unload_lora_weights() | |
| # pipe.transformer.__class__ = QwenImageTransformer2DModel | |
| # pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorFA3()) | |
| # optimize_pipeline_(pipe, image=[Image.new("RGB", (1024, 1024)), Image.new("RGB", (1024, 1024))], prompt="prompt") | |
| MAX_SEED = np.iinfo(np.int32).max | |
| def infer( | |
| image_subject, | |
| image_background=None, | |
| prompt="", | |
| seed=42, | |
| randomize_seed=True, | |
| true_guidance_scale=1, | |
| num_inference_steps=4, | |
| height=None, | |
| width=None, | |
| progress=gr.Progress(track_tqdm=True) | |
| ): | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| generator = torch.Generator(device=device).manual_seed(seed) | |
| result = pipe( | |
| image=image_subject, | |
| prompt=prompt, | |
| # height=height, | |
| # width=width, | |
| num_inference_steps=num_inference_steps, | |
| generator=generator, | |
| true_cfg_scale=true_guidance_scale, | |
| num_images_per_prompt=1, | |
| ).images[0] | |
| return [image_subject,result], seed | |
| # --- UI --- | |
| css = '''#col-container { max-width: 800px; margin: 0 auto; } | |
| .dark .progress-text{color: white !important} | |
| #examples{max-width: 800px; margin: 0 auto; }''' | |
| with gr.Blocks(theme=gr.themes.Citrus(), css=css) as demo: | |
| with gr.Column(elem_id="col-container"): | |
| gr.Markdown("## Qwen Image Edit — Fusion") | |
| gr.Markdown(""" | |
| Qwen Image Edit 2509 ✨ | |
| Using [dx8152's Qwen-Image-Edit-2509 Fusion LoRA](https://huggingface.co/dx8152/Qwen-Image-Edit-2509-Fusion) and [lightx2v Qwen-Image-Lightning LoRA]() for 4-step inference 💨 | |
| """ | |
| ) | |
| with gr.Row(): | |
| with gr.Column(): | |
| with gr.Row(): | |
| image_subject = gr.Image(label="input image", type="pil") | |
| image_background = gr.Image(label="background Image", type="pil", visible=False) | |
| prompt = gr.Textbox(label="prompt") | |
| run_button = gr.Button("Fuse", variant="primary") | |
| with gr.Accordion("Advanced Settings", open=False): | |
| seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0) | |
| randomize_seed = gr.Checkbox(label="Randomize Seed", value=True) | |
| true_guidance_scale = gr.Slider(label="True Guidance Scale", minimum=1.0, maximum=10.0, step=0.1, value=1.0) | |
| num_inference_steps = gr.Slider(label="Inference Steps", minimum=1, maximum=40, step=1, value=4) | |
| height = gr.Slider(label="Height", minimum=256, maximum=2048, step=8, value=1024) | |
| width = gr.Slider(label="Width", minimum=256, maximum=2048, step=8, value=1024) | |
| with gr.Column(): | |
| result = gr.ImageSlider(label="Output Image", interactive=False) | |
| prompt_preview = gr.Textbox(label="Processed Prompt", interactive=False, visible=False) | |
| gr.Examples( | |
| examples=[ | |
| ["fusion_car.png"],["fusion_shoes.png"], | |
| ], | |
| inputs=[image_subject], | |
| outputs=[result,seed], | |
| fn=infer, | |
| cache_examples="lazy", | |
| elem_id="examples" | |
| ) | |
| inputs = [ | |
| image_subject,image_background, prompt, | |
| seed, randomize_seed, true_guidance_scale, num_inference_steps, height, width | |
| ] | |
| outputs = [result, seed] | |
| run_event = run_button.click( | |
| fn=infer, | |
| inputs=inputs, | |
| outputs=outputs | |
| ) | |
| demo.launch(share=True) |