File size: 5,707 Bytes
71f5363
7d4ee71
 
 
 
71f5363
7d4ee71
6571814
 
4f2abef
 
 
 
6571814
ec6ec95
fe9c804
 
71f5363
63c5b22
 
 
9c01f36
 
695bf10
7d4ee71
 
 
 
 
c70c8bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a2cff3a
c70c8bd
 
 
 
 
 
 
a2cff3a
c70c8bd
 
a2cff3a
c70c8bd
79640f8
c70c8bd
 
a2cff3a
 
4f2abef
 
a2cff3a
4f2abef
6571814
028ba65
7d4ee71
 
79640f8
028ba65
c70c8bd
fab4b60
 
 
c70c8bd
 
 
 
 
 
05eb5ed
7d4ee71
c70c8bd
7d4ee71
 
 
79640f8
 
16da357
7d4ee71
c70c8bd
 
7d4ee71
 
 
79640f8
 
 
fab4b60
c70c8bd
79640f8
9c01f36
79640f8
028ba65
9cbc39c
b5c1d6f
 
028ba65
7d4ee71
29a13d1
7d4ee71
c70c8bd
a2fda4d
c70c8bd
aae18e9
a2fda4d
028ba65
79640f8
7d4ee71
 
a2fda4d
16da357
aae18e9
 
c70c8bd
fee7cbb
c70c8bd
 
 
 
 
 
 
cc842fe
c70c8bd
79640f8
fab4b60
c70c8bd
9c01f36
fab4b60
 
 
 
 
f88bac4
fab4b60
 
 
 
 
c70c8bd
 
aae18e9
c70c8bd
 
 
 
 
884ddb3
c70c8bd
 
 
 
884ddb3
 
028ba65
7d4ee71
26b519f
c70c8bd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import gradio as gr
import numpy as np
import random
import torch
import spaces

from PIL import Image
from diffusers import FlowMatchEulerDiscreteScheduler
from optimization import optimize_pipeline_
from diffusers import QwenImageEditPlusPipeline, QwenImageTransformer2DModel
# from qwenimage.pipeline_qwenimage_edit_plus import QwenImageEditPlusPipeline
# from qwenimage.transformer_qwenimage import QwenImageTransformer2DModel
# from qwenimage.qwen_fa3_processor import QwenDoubleStreamAttnProcessorFA3

import math
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file

from PIL import Image
import os
import gradio as gr
from gradio_client import Client, handle_file
import tempfile


# --- Model Loading ---
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"

# Scheduler configuration for Lightning
scheduler_config = {
    "base_image_seq_len": 256,
    "base_shift": math.log(3),
    "invert_sigmas": False,
    "max_image_seq_len": 8192,
    "max_shift": math.log(3),
    "num_train_timesteps": 1000,
    "shift": 1.0,
    "shift_terminal": None,
    "stochastic_sampling": False,
    "time_shift_type": "exponential",
    "use_beta_sigmas": False,
    "use_dynamic_shifting": True,
    "use_exponential_sigmas": False,
    "use_karras_sigmas": False,
}

# Initialize scheduler with Lightning config
scheduler = FlowMatchEulerDiscreteScheduler.from_config(scheduler_config)

pipe = QwenImageEditPlusPipeline.from_pretrained("Qwen/Qwen-Image-Edit-2509", 
                                                 scheduler=scheduler,
                                                 torch_dtype=dtype).to(device)
pipe.load_lora_weights(
        "lightx2v/Qwen-Image-Lightning", 
        weight_name="Qwen-Image-Lightning-4steps-V2.0.safetensors", adapter_name="fast"
    )
pipe.load_lora_weights(
       "dx8152/Qwen-Image-Edit-2509-Fusion", 
        weight_name="溶图.safetensors", adapter_name="fusion"
    )
pipe.set_adapters(["fast", "fusion"], adapter_weights=[1.,1.])

pipe.fuse_lora(adapter_names=["fast"])
pipe.fuse_lora(adapter_names=["fusion"])
pipe.unload_lora_weights()

# pipe.transformer.__class__ = QwenImageTransformer2DModel
# pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorFA3())

# optimize_pipeline_(pipe, image=[Image.new("RGB", (1024, 1024)), Image.new("RGB", (1024, 1024))], prompt="prompt")


MAX_SEED = np.iinfo(np.int32).max


@spaces.GPU
def infer(
    image_subject,
    image_background=None,
    prompt="",
    seed=42,
    randomize_seed=True,
    true_guidance_scale=1,
    num_inference_steps=4,
    height=None,
    width=None,
    progress=gr.Progress(track_tqdm=True)
):
    
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    generator = torch.Generator(device=device).manual_seed(seed)

    result = pipe(
        image=image_subject,
        prompt=prompt,
        # height=height,
        # width=width,
        num_inference_steps=num_inference_steps,
        generator=generator,
        true_cfg_scale=true_guidance_scale,
        num_images_per_prompt=1,
    ).images[0]

    return [image_subject,result], seed




# --- UI ---
css = '''#col-container { max-width: 800px; margin: 0 auto; }
.dark .progress-text{color: white !important}
#examples{max-width: 800px; margin: 0 auto; }'''


with gr.Blocks(theme=gr.themes.Citrus(), css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown("## Qwen Image Edit — Fusion")
        gr.Markdown("""
            Qwen Image Edit 2509 ✨ 
            Using [dx8152's Qwen-Image-Edit-2509 Fusion LoRA](https://huggingface.co/dx8152/Qwen-Image-Edit-2509-Fusion) and [lightx2v Qwen-Image-Lightning LoRA]() for 4-step inference 💨
            """
        )

        with gr.Row():
            with gr.Column():
                with gr.Row():
                    image_subject = gr.Image(label="input image", type="pil")
                    image_background = gr.Image(label="background Image", type="pil", visible=False)
                prompt =  gr.Textbox(label="prompt")
                run_button = gr.Button("Fuse", variant="primary")
                with gr.Accordion("Advanced Settings", open=False):
                        seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
                        randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
                        true_guidance_scale = gr.Slider(label="True Guidance Scale", minimum=1.0, maximum=10.0, step=0.1, value=1.0)
                        num_inference_steps = gr.Slider(label="Inference Steps", minimum=1, maximum=40, step=1, value=4)
                        height = gr.Slider(label="Height", minimum=256, maximum=2048, step=8, value=1024)
                        width = gr.Slider(label="Width", minimum=256, maximum=2048, step=8, value=1024)


               
            with gr.Column():
                result = gr.ImageSlider(label="Output Image", interactive=False)
                prompt_preview = gr.Textbox(label="Processed Prompt", interactive=False, visible=False)

        gr.Examples(
        examples=[
            ["fusion_car.png"],["fusion_shoes.png"],

        ],
        inputs=[image_subject],
        outputs=[result,seed],
        fn=infer,
        cache_examples="lazy",
        elem_id="examples"
    )
                    
    inputs = [
        image_subject,image_background, prompt,
        seed, randomize_seed, true_guidance_scale, num_inference_steps, height, width
    ]
    outputs = [result, seed]

   
    
    run_event = run_button.click(
        fn=infer, 
        inputs=inputs, 
        outputs=outputs
    )



    
demo.launch(share=True)