import gradio as gr import numpy as np import random import torch import spaces from PIL import Image from diffusers import FlowMatchEulerDiscreteScheduler from optimization import optimize_pipeline_ from diffusers import QwenImageEditPlusPipeline, QwenImageTransformer2DModel # from qwenimage.pipeline_qwenimage_edit_plus import QwenImageEditPlusPipeline # from qwenimage.transformer_qwenimage import QwenImageTransformer2DModel # from qwenimage.qwen_fa3_processor import QwenDoubleStreamAttnProcessorFA3 import math from huggingface_hub import hf_hub_download from safetensors.torch import load_file from PIL import Image import os import gradio as gr from gradio_client import Client, handle_file import tempfile # --- Model Loading --- dtype = torch.bfloat16 device = "cuda" if torch.cuda.is_available() else "cpu" # Scheduler configuration for Lightning scheduler_config = { "base_image_seq_len": 256, "base_shift": math.log(3), "invert_sigmas": False, "max_image_seq_len": 8192, "max_shift": math.log(3), "num_train_timesteps": 1000, "shift": 1.0, "shift_terminal": None, "stochastic_sampling": False, "time_shift_type": "exponential", "use_beta_sigmas": False, "use_dynamic_shifting": True, "use_exponential_sigmas": False, "use_karras_sigmas": False, } # Initialize scheduler with Lightning config scheduler = FlowMatchEulerDiscreteScheduler.from_config(scheduler_config) pipe = QwenImageEditPlusPipeline.from_pretrained("Qwen/Qwen-Image-Edit-2509", scheduler=scheduler, torch_dtype=dtype).to(device) pipe.load_lora_weights( "lightx2v/Qwen-Image-Lightning", weight_name="Qwen-Image-Lightning-4steps-V2.0.safetensors", adapter_name="fast" ) pipe.load_lora_weights( "dx8152/Qwen-Image-Edit-2509-Fusion", weight_name="溶图.safetensors", adapter_name="fusion" ) pipe.set_adapters(["fast", "fusion"], adapter_weights=[1.,1.]) pipe.fuse_lora(adapter_names=["fast"]) pipe.fuse_lora(adapter_names=["fusion"]) pipe.unload_lora_weights() # pipe.transformer.__class__ = QwenImageTransformer2DModel # pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorFA3()) # optimize_pipeline_(pipe, image=[Image.new("RGB", (1024, 1024)), Image.new("RGB", (1024, 1024))], prompt="prompt") MAX_SEED = np.iinfo(np.int32).max @spaces.GPU def infer( image_subject, image_background=None, prompt="", seed=42, randomize_seed=True, true_guidance_scale=1, num_inference_steps=4, height=None, width=None, progress=gr.Progress(track_tqdm=True) ): if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator(device=device).manual_seed(seed) result = pipe( image=image_subject, prompt=prompt, # height=height, # width=width, num_inference_steps=num_inference_steps, generator=generator, true_cfg_scale=true_guidance_scale, num_images_per_prompt=1, ).images[0] return [image_subject,result], seed # --- UI --- css = '''#col-container { max-width: 800px; margin: 0 auto; } .dark .progress-text{color: white !important} #examples{max-width: 800px; margin: 0 auto; }''' with gr.Blocks(theme=gr.themes.Citrus(), css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown("## Qwen Image Edit — Fusion") gr.Markdown(""" Qwen Image Edit 2509 ✨ Using [dx8152's Qwen-Image-Edit-2509 Fusion LoRA](https://huggingface.co/dx8152/Qwen-Image-Edit-2509-Fusion) and [lightx2v Qwen-Image-Lightning LoRA]() for 4-step inference 💨 """ ) with gr.Row(): with gr.Column(): with gr.Row(): image_subject = gr.Image(label="input image", type="pil") image_background = gr.Image(label="background Image", type="pil", visible=False) prompt = gr.Textbox(label="prompt") run_button = gr.Button("Fuse", variant="primary") with gr.Accordion("Advanced Settings", open=False): seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0) randomize_seed = gr.Checkbox(label="Randomize Seed", value=True) true_guidance_scale = gr.Slider(label="True Guidance Scale", minimum=1.0, maximum=10.0, step=0.1, value=1.0) num_inference_steps = gr.Slider(label="Inference Steps", minimum=1, maximum=40, step=1, value=4) height = gr.Slider(label="Height", minimum=256, maximum=2048, step=8, value=1024) width = gr.Slider(label="Width", minimum=256, maximum=2048, step=8, value=1024) with gr.Column(): result = gr.ImageSlider(label="Output Image", interactive=False) prompt_preview = gr.Textbox(label="Processed Prompt", interactive=False, visible=False) gr.Examples( examples=[ ["fusion_car.png"],["fusion_shoes.png"], ], inputs=[image_subject], outputs=[result,seed], fn=infer, cache_examples="lazy", elem_id="examples" ) inputs = [ image_subject,image_background, prompt, seed, randomize_seed, true_guidance_scale, num_inference_steps, height, width ] outputs = [result, seed] run_event = run_button.click( fn=infer, inputs=inputs, outputs=outputs ) demo.launch(share=True)