data_pipeline / caption.py
same899's picture
Upload caption.py with huggingface_hub
b089945 verified
import argparse
import glob
import json
import os
import torch
from accelerate import PartialState
from PIL import Image
from tqdm import tqdm
from transformers import AutoModel, AutoTokenizer
class caption_processor:
def __init__(self, vlm_name, device):
self.vlm = AutoModel.from_pretrained(
vlm_name,
trust_remote_code=True,
attn_implementation="flash_attention_2",
torch_dtype=torch.bfloat16,
)
self.vlm_tokenizer = AutoTokenizer.from_pretrained(
vlm_name, trust_remote_code=True
)
self.vlm = self.vlm.eval().to(device)
self.prompt = """
1. describe the image in brief, Avoid using phrases in [In the/The image/scene shows/contains/is a] in the captions, directly describe the contents.
2. Imagine this picture is the first frame of a 5-second video. Please describe the video and add dynamics, including the movement of objects and themes, as well as the overall camera movement.Avoid using phrases in [In the/The video/scene shows/contains/is a] in the descriptions, directly describe the contents.
3. Please output in JSON format.{"caption": "...","video_description": "..."}
""" # noqa: E501
def str_2_json(self, str):
# Find the first occurrence of '{'
start_idx = str.find("{")
if start_idx == -1:
return None
# Find the last occurrence of '}'
end_idx = str.rfind("}")
if end_idx == -1 or end_idx <= start_idx:
return None
# Extract the JSON string
json_str = str[start_idx : end_idx + 1]
# Load and return the JSON
try:
import json
return json.loads(json_str)
except json.JSONDecodeError:
return None
def process(self, image):
msgs = [{"role": "user", "content": [image, self.prompt]}]
answer = self.vlm.chat(
msgs=msgs, tokenizer=self.vlm_tokenizer, enable_thinking=False, stream=False
)
dict_answer = self.str_2_json(answer)
if dict_answer is None:
return {"response": answer}
return dict_answer
def get_images_from_path(path):
if os.path.isdir(path):
return glob.glob(os.path.join(path, "*.jpg")) + glob.glob(
os.path.join(path, "*.png")
)
elif os.path.isfile(path) and (path.endswith(".jpg") or path.endswith(".png")):
return [path]
else:
return []
def parse_args():
parser = argparse.ArgumentParser(description="Caption processor")
parser.add_argument("--vlm_name", type=str, required=True)
parser.add_argument("--output_dir", type=str, required=True)
parser.add_argument("--paths", type=str, required=True, nargs="+")
return parser.parse_args()
if __name__ == "__main__":
distributed_state = PartialState()
args = parse_args()
output_dir = args.output_dir
os.makedirs(output_dir, exist_ok=True)
vlm_name = args.vlm_name
paths = args.paths
all_paths = []
for path in paths:
images = get_images_from_path(path)
all_paths.extend(images)
print("found", len(all_paths), "images")
processor = caption_processor(
vlm_name,
distributed_state.device,
)
with distributed_state.split_between_processes(
all_paths, apply_padding=False
) as batched_paths:
print("GPU", distributed_state.device, "found", len(batched_paths), "images")
for path in tqdm(batched_paths, desc="Processing images"):
try:
json_path = os.path.join(output_dir, os.path.basename(path) + ".json")
if os.path.exists(json_path):
print(f"File {json_path} already exists, skipping.")
continue
image = Image.open(path)
output = None
for _ in range(3):
output = processor.process(image)
if output is not None:
break
if output is None:
raise Exception("Failed to process image after 3 attempts")
else:
with open(
json_path,
"w",
encoding="utf-8",
) as f:
json.dump(output, f, ensure_ascii=False, indent=2)
except Exception as e:
print(f"Error processing {path}: {e}")