Upload caption.py with huggingface_hub
Browse files- caption.py +135 -0
caption.py
ADDED
|
@@ -0,0 +1,135 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import argparse
|
| 2 |
+
import glob
|
| 3 |
+
import json
|
| 4 |
+
import os
|
| 5 |
+
|
| 6 |
+
import torch
|
| 7 |
+
from accelerate import PartialState
|
| 8 |
+
from PIL import Image
|
| 9 |
+
from tqdm import tqdm
|
| 10 |
+
from transformers import AutoModel, AutoTokenizer
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
class caption_processor:
|
| 14 |
+
def __init__(self, vlm_name, device):
|
| 15 |
+
self.vlm = AutoModel.from_pretrained(
|
| 16 |
+
vlm_name,
|
| 17 |
+
trust_remote_code=True,
|
| 18 |
+
attn_implementation="flash_attention_2",
|
| 19 |
+
torch_dtype=torch.bfloat16,
|
| 20 |
+
)
|
| 21 |
+
self.vlm_tokenizer = AutoTokenizer.from_pretrained(
|
| 22 |
+
vlm_name, trust_remote_code=True
|
| 23 |
+
)
|
| 24 |
+
|
| 25 |
+
self.vlm = self.vlm.eval().to(device)
|
| 26 |
+
self.prompt = """
|
| 27 |
+
1. describe the image in brief, Avoid using phrases in [In the/The image/scene shows/contains/is a] in the captions, directly describe the contents.
|
| 28 |
+
2. Imagine this picture is the first frame of a 5-second video. Please describe the video and add dynamics, including the movement of objects and themes, as well as the overall camera movement.Avoid using phrases in [In the/The video/scene shows/contains/is a] in the descriptions, directly describe the contents.
|
| 29 |
+
3. Please output in JSON format.{"caption": "...","video_description": "..."}
|
| 30 |
+
""" # noqa: E501
|
| 31 |
+
|
| 32 |
+
def str_2_json(self, str):
|
| 33 |
+
# Find the first occurrence of '{'
|
| 34 |
+
start_idx = str.find("{")
|
| 35 |
+
if start_idx == -1:
|
| 36 |
+
return None
|
| 37 |
+
|
| 38 |
+
# Find the last occurrence of '}'
|
| 39 |
+
end_idx = str.rfind("}")
|
| 40 |
+
if end_idx == -1 or end_idx <= start_idx:
|
| 41 |
+
return None
|
| 42 |
+
|
| 43 |
+
# Extract the JSON string
|
| 44 |
+
json_str = str[start_idx : end_idx + 1]
|
| 45 |
+
|
| 46 |
+
# Load and return the JSON
|
| 47 |
+
try:
|
| 48 |
+
import json
|
| 49 |
+
|
| 50 |
+
return json.loads(json_str)
|
| 51 |
+
except json.JSONDecodeError:
|
| 52 |
+
return None
|
| 53 |
+
|
| 54 |
+
def process(self, image):
|
| 55 |
+
msgs = [{"role": "user", "content": [image, self.prompt]}]
|
| 56 |
+
|
| 57 |
+
answer = self.vlm.chat(
|
| 58 |
+
msgs=msgs, tokenizer=self.vlm_tokenizer, enable_thinking=False, stream=False
|
| 59 |
+
)
|
| 60 |
+
|
| 61 |
+
dict_answer = self.str_2_json(answer)
|
| 62 |
+
if dict_answer is None:
|
| 63 |
+
return {"response": answer}
|
| 64 |
+
|
| 65 |
+
return dict_answer
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
def get_images_from_path(path):
|
| 69 |
+
if os.path.isdir(path):
|
| 70 |
+
return glob.glob(os.path.join(path, "*.jpg")) + glob.glob(
|
| 71 |
+
os.path.join(path, "*.png")
|
| 72 |
+
)
|
| 73 |
+
elif os.path.isfile(path) and (path.endswith(".jpg") or path.endswith(".png")):
|
| 74 |
+
return [path]
|
| 75 |
+
else:
|
| 76 |
+
return []
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
def parse_args():
|
| 80 |
+
parser = argparse.ArgumentParser(description="Caption processor")
|
| 81 |
+
parser.add_argument("--vlm_name", type=str, required=True)
|
| 82 |
+
parser.add_argument("--output_dir", type=str, required=True)
|
| 83 |
+
parser.add_argument("--paths", type=str, required=True, nargs="+")
|
| 84 |
+
return parser.parse_args()
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
if __name__ == "__main__":
|
| 88 |
+
distributed_state = PartialState()
|
| 89 |
+
args = parse_args()
|
| 90 |
+
output_dir = args.output_dir
|
| 91 |
+
os.makedirs(output_dir, exist_ok=True)
|
| 92 |
+
|
| 93 |
+
vlm_name = args.vlm_name
|
| 94 |
+
paths = args.paths
|
| 95 |
+
all_paths = []
|
| 96 |
+
for path in paths:
|
| 97 |
+
images = get_images_from_path(path)
|
| 98 |
+
all_paths.extend(images)
|
| 99 |
+
print("found", len(all_paths), "images")
|
| 100 |
+
|
| 101 |
+
processor = caption_processor(
|
| 102 |
+
vlm_name,
|
| 103 |
+
distributed_state.device,
|
| 104 |
+
)
|
| 105 |
+
with distributed_state.split_between_processes(
|
| 106 |
+
all_paths, apply_padding=False
|
| 107 |
+
) as batched_paths:
|
| 108 |
+
print("GPU", distributed_state.device, "found", len(batched_paths), "images")
|
| 109 |
+
|
| 110 |
+
for path in tqdm(batched_paths, desc="Processing images"):
|
| 111 |
+
try:
|
| 112 |
+
json_path = os.path.join(output_dir, os.path.basename(path) + ".json")
|
| 113 |
+
if os.path.exists(json_path):
|
| 114 |
+
print(f"File {json_path} already exists, skipping.")
|
| 115 |
+
continue
|
| 116 |
+
|
| 117 |
+
image = Image.open(path)
|
| 118 |
+
output = None
|
| 119 |
+
|
| 120 |
+
for _ in range(3):
|
| 121 |
+
output = processor.process(image)
|
| 122 |
+
if output is not None:
|
| 123 |
+
break
|
| 124 |
+
|
| 125 |
+
if output is None:
|
| 126 |
+
raise Exception("Failed to process image after 3 attempts")
|
| 127 |
+
else:
|
| 128 |
+
with open(
|
| 129 |
+
json_path,
|
| 130 |
+
"w",
|
| 131 |
+
encoding="utf-8",
|
| 132 |
+
) as f:
|
| 133 |
+
json.dump(output, f, ensure_ascii=False, indent=2)
|
| 134 |
+
except Exception as e:
|
| 135 |
+
print(f"Error processing {path}: {e}")
|