import argparse import glob import json import os import torch from accelerate import PartialState from PIL import Image from tqdm import tqdm from transformers import AutoModel, AutoTokenizer class caption_processor: def __init__(self, vlm_name, device): self.vlm = AutoModel.from_pretrained( vlm_name, trust_remote_code=True, attn_implementation="flash_attention_2", torch_dtype=torch.bfloat16, ) self.vlm_tokenizer = AutoTokenizer.from_pretrained( vlm_name, trust_remote_code=True ) self.vlm = self.vlm.eval().to(device) self.prompt = """ 1. describe the image in brief, Avoid using phrases in [In the/The image/scene shows/contains/is a] in the captions, directly describe the contents. 2. Imagine this picture is the first frame of a 5-second video. Please describe the video and add dynamics, including the movement of objects and themes, as well as the overall camera movement.Avoid using phrases in [In the/The video/scene shows/contains/is a] in the descriptions, directly describe the contents. 3. Please output in JSON format.{"caption": "...","video_description": "..."} """ # noqa: E501 def str_2_json(self, str): # Find the first occurrence of '{' start_idx = str.find("{") if start_idx == -1: return None # Find the last occurrence of '}' end_idx = str.rfind("}") if end_idx == -1 or end_idx <= start_idx: return None # Extract the JSON string json_str = str[start_idx : end_idx + 1] # Load and return the JSON try: import json return json.loads(json_str) except json.JSONDecodeError: return None def process(self, image): msgs = [{"role": "user", "content": [image, self.prompt]}] answer = self.vlm.chat( msgs=msgs, tokenizer=self.vlm_tokenizer, enable_thinking=False, stream=False ) dict_answer = self.str_2_json(answer) if dict_answer is None: return {"response": answer} return dict_answer def get_images_from_path(path): if os.path.isdir(path): return glob.glob(os.path.join(path, "*.jpg")) + glob.glob( os.path.join(path, "*.png") ) elif os.path.isfile(path) and (path.endswith(".jpg") or path.endswith(".png")): return [path] else: return [] def parse_args(): parser = argparse.ArgumentParser(description="Caption processor") parser.add_argument("--vlm_name", type=str, required=True) parser.add_argument("--output_dir", type=str, required=True) parser.add_argument("--paths", type=str, required=True, nargs="+") return parser.parse_args() if __name__ == "__main__": distributed_state = PartialState() args = parse_args() output_dir = args.output_dir os.makedirs(output_dir, exist_ok=True) vlm_name = args.vlm_name paths = args.paths all_paths = [] for path in paths: images = get_images_from_path(path) all_paths.extend(images) print("found", len(all_paths), "images") processor = caption_processor( vlm_name, distributed_state.device, ) with distributed_state.split_between_processes( all_paths, apply_padding=False ) as batched_paths: print("GPU", distributed_state.device, "found", len(batched_paths), "images") for path in tqdm(batched_paths, desc="Processing images"): try: json_path = os.path.join(output_dir, os.path.basename(path) + ".json") if os.path.exists(json_path): print(f"File {json_path} already exists, skipping.") continue image = Image.open(path) output = None for _ in range(3): output = processor.process(image) if output is not None: break if output is None: raise Exception("Failed to process image after 3 attempts") else: with open( json_path, "w", encoding="utf-8", ) as f: json.dump(output, f, ensure_ascii=False, indent=2) except Exception as e: print(f"Error processing {path}: {e}")