paper_url
stringlengths 36
81
| paper_title
stringlengths 1
242
⌀ | paper_arxiv_id
stringlengths 9
16
⌀ | paper_url_abs
stringlengths 18
314
| paper_url_pdf
stringlengths 21
935
⌀ | repo_url
stringlengths 26
200
| is_official
bool 2
classes | mentioned_in_paper
bool 2
classes | mentioned_in_github
bool 2
classes | framework
stringclasses 9
values |
|---|---|---|---|---|---|---|---|---|---|
https://paperswithcode.com/paper/evaluating-uncertainty-in-deep-gaussian
|
Evaluating Uncertainty in Deep Gaussian Processes
|
2504.17719
|
https://arxiv.org/abs/2504.17719v1
|
https://arxiv.org/pdf/2504.17719v1.pdf
|
https://github.com/matthjs/xai-gp
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/to-match-or-not-to-match-revisiting-image
|
To Match or Not to Match: Revisiting Image Matching for Reliable Visual Place Recognition
|
2504.06116
|
https://arxiv.org/abs/2504.06116v1
|
https://arxiv.org/pdf/2504.06116v1.pdf
|
https://github.com/FarInHeight/To-Match-or-Not-to-Match
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/comparison-of-path-planning-algorithms-for
|
Comparison of Path Planning Algorithms for Autonomous Vehicle Navigation Using Satellite and Airborne LiDAR Data
|
2507.05884
|
https://arxiv.org/abs/2507.05884v1
|
https://arxiv.org/pdf/2507.05884v1.pdf
|
https://github.com/kuma990122/comparison-of-path-planning-algorithm-for-autonomous-vehicle-using-satellite-and-airborne-lidar-data
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/computing-the-unitary-best-approximant-to-the
|
Computing the unitary best approximant to the exponential function
|
2504.10062
|
https://arxiv.org/abs/2504.10062v1
|
https://arxiv.org/pdf/2504.10062v1.pdf
|
https://github.com/newbisi/rexpi
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/unitary-rational-best-approximations-to-the
|
Unitary rational best approximations to the exponential function
|
2312.13809
|
https://arxiv.org/abs/2312.13809v1
|
https://arxiv.org/pdf/2312.13809v1.pdf
|
https://github.com/newbisi/rexpi
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/weakly-supervised-contrastive-learning-with
|
Weakly-supervised Contrastive Learning with Quantity Prompts for Moving Infrared Small Target Detection
|
2507.02454
|
https://arxiv.org/abs/2507.02454v1
|
https://arxiv.org/pdf/2507.02454v1.pdf
|
https://github.com/uestc-nnlab/wecol
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/dnlut-ultra-efficient-color-image-denoising
|
DnLUT: Ultra-Efficient Color Image Denoising via Channel-Aware Lookup Tables
|
2503.15931
|
https://arxiv.org/abs/2503.15931v1
|
https://arxiv.org/pdf/2503.15931v1.pdf
|
https://github.com/stephen0808/dnlut
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/lifelongpr-lifelong-knowledge-fusion-for
|
LifelongPR: Lifelong knowledge fusion for point cloud place recognition based on replay and prompt learning
|
2507.10034
|
https://arxiv.org/abs/2507.10034v1
|
https://arxiv.org/pdf/2507.10034v1.pdf
|
https://github.com/zouxianghong/LifelongPR
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/unirag-universal-retrieval-augmentation-for
|
UniRAG: Universal Retrieval Augmentation for Large Vision Language Models
|
2405.10311
|
https://arxiv.org/abs/2405.10311v3
|
https://arxiv.org/pdf/2405.10311v3.pdf
|
https://github.com/castorini/unirag
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/restormer-efficient-transformer-for-high
|
Restormer: Efficient Transformer for High-Resolution Image Restoration
|
2111.09881
|
https://arxiv.org/abs/2111.09881v2
|
https://arxiv.org/pdf/2111.09881v2.pdf
|
https://github.com/stephen0808/dnlut
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/optimal-flock-formation-induced-by-agent
|
Optimal flock formation induced by agent heterogeneity
|
2504.12297
|
https://arxiv.org/abs/2504.12297v1
|
https://arxiv.org/pdf/2504.12297v1.pdf
|
https://github.com/montanariarthur/optflock
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/lemur-log-parsing-with-entropy-sampling-and
|
Lemur: Log Parsing with Entropy Sampling and Chain-of-Thought Merging
|
2402.18205
|
https://arxiv.org/abs/2402.18205v5
|
https://arxiv.org/pdf/2402.18205v5.pdf
|
https://github.com/knediny/lemur
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/lcpr-a-multi-scale-attention-based-lidar
|
LCPR: A Multi-Scale Attention-Based LiDAR-Camera Fusion Network for Place Recognition
|
2311.03198
|
https://arxiv.org/abs/2311.03198v2
|
https://arxiv.org/pdf/2311.03198v2.pdf
|
https://github.com/ZhouZijie77/LCPR
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/weisfeiler-leman-in-the-bamboo-novel-amr-1
|
Weisfeiler-leman in the bamboo: Novel AMR graph metrics and a benchmark for AMR graph similarity.
| null |
https://aclanthology.org/2021.tacl-1.85/
|
https://aclanthology.org/2021.tacl-1.85.pdf
|
https://github.com/flipz357/bamboo-amr-benchmark
| false
| false
| false
|
none
|
https://paperswithcode.com/paper/spectralgpt-spectral-foundation-model
|
SpectralGPT: Spectral Remote Sensing Foundation Model
|
2311.07113
|
https://arxiv.org/abs/2311.07113v3
|
https://arxiv.org/pdf/2311.07113v3.pdf
|
https://github.com/danfenghong/IEEE_TPAMI_SpectralGPT
| false
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/og-hfyolo-orientation-gradient-guidance-and
|
OG-HFYOLO :Orientation gradient guidance and heterogeneous feature fusion for deformation table cell instance segmentation
|
2504.20682
|
https://arxiv.org/abs/2504.20682v2
|
https://arxiv.org/pdf/2504.20682v2.pdf
|
https://github.com/justliulong/oghfyolo
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/mobileposer-real-time-full-body-pose
|
MobilePoser: Real-Time Full-Body Pose Estimation and 3D Human Translation from IMUs in Mobile Consumer Devices
|
2504.12492
|
https://arxiv.org/abs/2504.12492v1
|
https://arxiv.org/pdf/2504.12492v1.pdf
|
https://github.com/SPICExLAB/MobilePoser
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/enhancing-the-geometric-problem-solving
|
Enhancing the Geometric Problem-Solving Ability of Multimodal LLMs via Symbolic-Neural Integration
|
2504.12773
|
https://arxiv.org/abs/2504.12773v1
|
https://arxiv.org/pdf/2504.12773v1.pdf
|
https://github.com/ycpnotfound/geogen
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/meltdown-bridging-the-perception-gap-in
|
Meltdown: Bridging the Perception Gap in Sustainable Food Behaviors Through Immersive VR
|
2504.14324
|
https://arxiv.org/abs/2504.14324v1
|
https://arxiv.org/pdf/2504.14324v1.pdf
|
https://github.com/florentianayuwono/meltdown
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/projected-normal-distribution-moment
|
Projected Normal Distribution: Moment Approximations and Generalizations
|
2506.17461
|
https://arxiv.org/abs/2506.17461v1
|
https://arxiv.org/pdf/2506.17461v1.pdf
|
https://github.com/dherrera1911/projnormal
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/stochastic-quadrature-rules-for-solving-pdes
|
Stochastic Quadrature Rules for Solving PDEs using Neural Networks
|
2504.11976
|
https://arxiv.org/abs/2504.11976v2
|
https://arxiv.org/pdf/2504.11976v2.pdf
|
https://github.com/jamie-m-taylor/Stochastic-Integration
| true
| true
| false
|
tf
|
https://paperswithcode.com/paper/2505-10978
|
Group-in-Group Policy Optimization for LLM Agent Training
|
2505.10978
|
https://arxiv.org/abs/2505.10978v1
|
https://arxiv.org/pdf/2505.10978v1.pdf
|
https://github.com/langfengq/verl-agent
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/2505-11455
|
ASRC-SNN: Adaptive Skip Recurrent Connection Spiking Neural Network
|
2505.11455
|
https://arxiv.org/abs/2505.11455v1
|
https://arxiv.org/pdf/2505.11455v1.pdf
|
https://github.com/dgxdn/asrc-snn
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/2505-11190
|
JaxSGMC: Modular stochastic gradient MCMC in JAX
|
2505.11190
|
https://arxiv.org/abs/2505.11190v1
|
https://arxiv.org/pdf/2505.11190v1.pdf
|
https://github.com/tummfm/jax-sgmc
| true
| true
| false
|
jax
|
https://paperswithcode.com/paper/subspace-identification-of-temperature
|
Subspace Identification of Temperature Dynamics
|
1908.02379
|
https://arxiv.org/abs/1908.02379v1
|
https://arxiv.org/pdf/1908.02379v1.pdf
|
https://github.com/AleksandarHaber/Subspace-Identification-State-Space-System-Identification-of-Dynamical-Systems-and-Time-Series-
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/glm-4-1v-thinking-towards-versatile
|
GLM-4.1V-Thinking: Towards Versatile Multimodal Reasoning with Scalable Reinforcement Learning
|
2507.01006
|
https://arxiv.org/abs/2507.01006v2
|
https://arxiv.org/pdf/2507.01006v2.pdf
|
https://github.com/thudm/glm-4.1v-thinking
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/fundamental-limits-of-perfect-concept-erasure
|
Fundamental Limits of Perfect Concept Erasure
|
2503.20098
|
https://arxiv.org/abs/2503.20098v1
|
https://arxiv.org/pdf/2503.20098v1.pdf
|
https://github.com/brcsomnath/PEF
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/local-a-graph-based-active-learning-approach
|
LOCAL: A Graph-Based Active Learning Approach for Stability Analysis of DAC@NG Catalysts
|
2503.19445
|
https://arxiv.org/abs/2503.19445v1
|
https://arxiv.org/pdf/2503.19445v1.pdf
|
https://github.com/yueyin19960520/LOCAL
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/ras-retrieval-and-structuring-for-knowledge
|
RAS: Retrieval-And-Structuring for Knowledge-Intensive LLM Generation
|
2502.10996
|
https://arxiv.org/abs/2502.10996v2
|
https://arxiv.org/pdf/2502.10996v2.pdf
|
https://github.com/pat-jj/Retrieval-And-Structure
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/on-the-reproducibility-of-learned-sparse
|
On the Reproducibility of Learned Sparse Retrieval Adaptations for Long Documents
|
2503.23824
|
https://arxiv.org/abs/2503.23824v1
|
https://arxiv.org/pdf/2503.23824v1.pdf
|
https://github.com/lionisakis/reproducibilitiy-lsr-long
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/quantifying-lexical-semantic-shift-via
|
Quantifying Lexical Semantic Shift via Unbalanced Optimal Transport
|
2412.12569
|
https://arxiv.org/abs/2412.12569v1
|
https://arxiv.org/pdf/2412.12569v1.pdf
|
https://github.com/ryo-lyo/Semantic-Shift-via-UOT
| true
| false
| true
|
none
|
https://paperswithcode.com/paper/ugodit-unsupervised-group-deep-image-prior
|
UGoDIT: Unsupervised Group Deep Image Prior Via Transferable Weights
|
2505.11720
|
https://arxiv.org/abs/2505.11720v1
|
https://arxiv.org/pdf/2505.11720v1.pdf
|
https://github.com/sjames40/ugodit
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/physics-informed-learning-for-the-friction
|
Physics-Informed Learning for the Friction Modeling of High-Ratio Harmonic Drives
|
2410.12685
|
https://arxiv.org/abs/2410.12685v1
|
https://arxiv.org/pdf/2410.12685v1.pdf
|
https://github.com/ami-iit/paper_sorrentino_2024_humanoids_friction_estimation
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/filtrations-indexed-by-attracting-levels-and
|
Filtrations Indexed by Attracting Levels and their Applications
|
2506.18250
|
https://arxiv.org/abs/2506.18250v1
|
https://arxiv.org/pdf/2506.18250v1.pdf
|
https://github.com/yusuke-imoto-lab/eps-attracting-basin
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/pentestgpt-an-llm-empowered-automatic
|
PentestGPT: An LLM-empowered Automatic Penetration Testing Tool
|
2308.06782
|
https://arxiv.org/abs/2308.06782v2
|
https://arxiv.org/pdf/2308.06782v2.pdf
|
https://github.com/greydgl/pentestgpt
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/signet-convolutional-siamese-network-for
|
SigNet: Convolutional Siamese Network for Writer Independent Offline Signature Verification
|
1707.02131
|
http://arxiv.org/abs/1707.02131v2
|
http://arxiv.org/pdf/1707.02131v2.pdf
|
https://github.com/debasis-dotcom/Real-or-Forged-signature-detection-using-Siamese-Network
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/transfer-learning-from-visual-speech
|
Transfer Learning from Visual Speech Recognition to Mouthing Recognition in German Sign Language
|
2505.13784
|
https://arxiv.org/abs/2505.13784v1
|
https://arxiv.org/pdf/2505.13784v1.pdf
|
https://github.com/nphamdinh/transfer-learning-vsr-mouthing-sign-language
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/dual-modal-attention-enhanced-text-video
|
Dual-Modal Attention-Enhanced Text-Video Retrieval with Triplet Partial Margin Contrastive Learning
|
2309.11082
|
https://arxiv.org/abs/2309.11082v3
|
https://arxiv.org/pdf/2309.11082v3.pdf
|
https://github.com/alipay/Ant-Multi-Modal-Framework
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/cenet-context-enhancement-network-for-medical
|
CENet: Context Enhancement Network for Medical Image Segmentation
|
2505.18423
|
https://arxiv.org/abs/2505.18423v1
|
https://arxiv.org/pdf/2505.18423v1.pdf
|
https://github.com/xmindflow/cenet
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/thinkvideo-high-quality-reasoning-video
|
ThinkVideo: High-Quality Reasoning Video Segmentation with Chain of Thoughts
|
2505.18561
|
https://arxiv.org/abs/2505.18561v1
|
https://arxiv.org/pdf/2505.18561v1.pdf
|
https://github.com/danielshkao/thinkvideo
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/henn-a-hierarchical-epsilon-net-navigation
|
HENN: A Hierarchical Epsilon Net Navigation Graph for Approximate Nearest Neighbor Search
|
2505.17368
|
https://arxiv.org/abs/2505.17368v1
|
https://arxiv.org/pdf/2505.17368v1.pdf
|
https://github.com/uic-indexlab/henn
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/constructive-characterisations-of-the-must
|
Constructive characterisations of the must-preorder for asynchrony
|
2501.13002
|
https://arxiv.org/abs/2501.13002v1
|
https://arxiv.org/pdf/2501.13002v1.pdf
|
https://github.com/gbtito/testing-theory
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/generative-novel-view-synthesis-with-3d-aware
|
Generative Novel View Synthesis with 3D-Aware Diffusion Models
|
2304.02602
|
https://arxiv.org/abs/2304.02602v1
|
https://arxiv.org/pdf/2304.02602v1.pdf
|
https://github.com/JhihYangWu/UnofficialGeNVS
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/sparsity-may-be-all-you-need-sparse-random
|
Sparsity May Be All You Need: Sparse Random Parameter Adaptation
|
2502.15975
|
https://arxiv.org/abs/2502.15975v2
|
https://arxiv.org/pdf/2502.15975v2.pdf
|
https://github.com/IBM/SpaRTA
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/hadamax-encoding-elevating-performance-in
|
Hadamax Encoding: Elevating Performance in Model-Free Atari
|
2505.15345
|
https://arxiv.org/abs/2505.15345v1
|
https://arxiv.org/pdf/2505.15345v1.pdf
|
https://github.com/jacobkooi/hadamax
| true
| true
| true
|
jax
|
https://paperswithcode.com/paper/matryoshka-representations-for-adaptive
|
Matryoshka Representation Learning
|
2205.13147
|
https://arxiv.org/abs/2205.13147v4
|
https://arxiv.org/pdf/2205.13147v4.pdf
|
https://github.com/novasearch-team/rag-retrieval
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/jasper-and-stella-distillation-of-sota
|
Jasper and Stella: distillation of SOTA embedding models
|
2412.19048
|
https://arxiv.org/abs/2412.19048v2
|
https://arxiv.org/pdf/2412.19048v2.pdf
|
https://github.com/novasearch-team/rag-retrieval
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/forward-and-reverse-gradient-based
|
Forward and Reverse Gradient-Based Hyperparameter Optimization
|
1703.01785
|
http://arxiv.org/abs/1703.01785v3
|
http://arxiv.org/pdf/1703.01785v3.pdf
|
https://github.com/benchopt/benchmark_bilevel
| false
| false
| true
|
jax
|
https://paperswithcode.com/paper/zero-shot-hyperspectral-pansharpening-using
|
Zero-Shot Hyperspectral Pansharpening Using Hysteresis-Based Tuning for Spectral Quality Control
|
2505.16658
|
https://arxiv.org/abs/2505.16658v1
|
https://arxiv.org/pdf/2505.16658v1.pdf
|
https://github.com/giu-guarino/rho-pnn
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/background-matters-a-cross-view-bidirectional
|
Background Matters: A Cross-view Bidirectional Modeling Framework for Semi-supervised Medical Image Segmentation
|
2505.16625
|
https://arxiv.org/abs/2505.16625v1
|
https://arxiv.org/pdf/2505.16625v1.pdf
|
https://github.com/caoluyang0830/cvbm
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/cartesian-double-theories-a-double
|
Cartesian double theories: A double-categorical framework for categorical doctrines
|
2310.05384
|
https://arxiv.org/abs/2310.05384v3
|
https://arxiv.org/pdf/2310.05384v3.pdf
|
https://github.com/toposinstitute/catcolab
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/arb-a-comprehensive-arabic-multimodal
|
ARB: A Comprehensive Arabic Multimodal Reasoning Benchmark
|
2505.17021
|
https://arxiv.org/abs/2505.17021v1
|
https://arxiv.org/pdf/2505.17021v1.pdf
|
https://github.com/mbzuai-oryx/arb
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/specextend-a-drop-in-enhancement-for
|
SpecExtend: A Drop-in Enhancement for Speculative Decoding of Long Sequences
|
2505.20776
|
https://arxiv.org/abs/2505.20776v1
|
https://arxiv.org/pdf/2505.20776v1.pdf
|
https://github.com/jycha98/specextend
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/viability-of-future-actions-robust-safety-in
|
Viability of Future Actions: Robust Safety in Reinforcement Learning via Entropy Regularization
|
2506.10871
|
https://arxiv.org/abs/2506.10871v1
|
https://arxiv.org/pdf/2506.10871v1.pdf
|
https://github.com/data-science-in-mechanical-engineering/entropy_robustness
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/frcrn-boosting-feature-representation-using
|
FRCRN: Boosting Feature Representation using Frequency Recurrence for Monaural Speech Enhancement
|
2206.07293
|
https://arxiv.org/abs/2206.07293v3
|
https://arxiv.org/pdf/2206.07293v3.pdf
|
https://github.com/modelscope/ClearerVoice-Studio
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/mossformer-pushing-the-performance-limit-of
|
MossFormer: Pushing the Performance Limit of Monaural Speech Separation using Gated Single-Head Transformer with Convolution-Augmented Joint Self-Attentions
|
2302.11824
|
https://arxiv.org/abs/2302.11824v1
|
https://arxiv.org/pdf/2302.11824v1.pdf
|
https://github.com/modelscope/ClearerVoice-Studio
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/plant-bioelectric-early-warning-systems-a
|
Plant Bioelectric Early Warning Systems: A Five-Year Investigation into Human-Plant Electromagnetic Communication
|
2506.04132
|
https://arxiv.org/abs/2506.04132v1
|
https://arxiv.org/pdf/2506.04132v1.pdf
|
https://github.com/pgloor/hiddenbiosignals
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/how-does-gpt-2-compute-greater-than-1
|
How does GPT-2 compute greater-than?: Interpreting mathematical abilities in a pre-trained language model
|
2305.00586
|
https://arxiv.org/abs/2305.00586v5
|
https://arxiv.org/pdf/2305.00586v5.pdf
|
https://github.com/technion-cs-nlp/peap
| false
| false
| true
|
jax
|
https://paperswithcode.com/paper/narrative-shift-detection-a-hybrid-approach
|
Narrative Shift Detection: A Hybrid Approach of Dynamic Topic Models and Large Language Models
|
2506.20269
|
https://arxiv.org/abs/2506.20269v1
|
https://arxiv.org/pdf/2506.20269v1.pdf
|
https://github.com/k-rlange/t2snarrativechanges
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/asf-yolo-a-novel-yolo-model-with-attentional
|
ASF-YOLO: A Novel YOLO Model with Attentional Scale Sequence Fusion for Cell Instance Segmentation
|
2312.06458
|
https://arxiv.org/abs/2312.06458v2
|
https://arxiv.org/pdf/2312.06458v2.pdf
|
https://github.com/mkang315/asf-yolo
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/how-do-we-answer-complex-questions-discourse-1
|
How Do We Answer Complex Questions: Discourse Structure of Long-form Answers
|
2203.11048
|
https://arxiv.org/abs/2203.11048v1
|
https://arxiv.org/pdf/2203.11048v1.pdf
|
https://github.com/utcsnlp/lfqa_discourse
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/a-model-for-every-user-and-budget-label-free
|
A Model for Every User and Budget: Label-Free and Personalized Mixed-Precision Quantization
|
2307.12659
|
https://arxiv.org/abs/2307.12659v2
|
https://arxiv.org/pdf/2307.12659v2.pdf
|
https://github.com/samsunglabs/myqasr
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/c-tlsan-content-enhanced-time-aware-long-and
|
C-TLSAN: Content-Enhanced Time-Aware Long- and Short-Term Attention Network for Personalized Recommendation
|
2506.13021
|
https://arxiv.org/abs/2506.13021v1
|
https://arxiv.org/pdf/2506.13021v1.pdf
|
https://github.com/booml247/ctlsan
| true
| true
| true
|
tf
|
https://paperswithcode.com/paper/discosg-towards-discourse-level-text-scene
|
DiscoSG: Towards Discourse-Level Text Scene Graph Parsing through Iterative Graph Refinement
|
2506.15583
|
https://arxiv.org/abs/2506.15583v1
|
https://arxiv.org/pdf/2506.15583v1.pdf
|
https://github.com/zhuang-li/factual
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/going-beyond-s-8-fast-inference-of-the-matter
|
Going beyond $S_8$: fast inference of the matter power spectrum from weak-lensing surveys
|
2506.16434
|
https://arxiv.org/abs/2506.16434v1
|
https://arxiv.org/pdf/2506.16434v1.pdf
|
https://github.com/xuod/cls2pk
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/ai-research-agents-for-machine-learning
|
AI Research Agents for Machine Learning: Search, Exploration, and Generalization in MLE-bench
|
2507.02554
|
https://arxiv.org/abs/2507.02554v1
|
https://arxiv.org/pdf/2507.02554v1.pdf
|
https://github.com/facebookresearch/aira-dojo
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/lpoi-listwise-preference-optimization-for
|
LPOI: Listwise Preference Optimization for Vision Language Models
|
2505.21061
|
https://arxiv.org/abs/2505.21061v1
|
https://arxiv.org/pdf/2505.21061v1.pdf
|
https://github.com/fatemehpesaran310/lpoi
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/ai-face-a-million-scale-demographically
|
AI-Face: A Million-Scale Demographically Annotated AI-Generated Face Dataset and Fairness Benchmark
|
2406.00783
|
https://arxiv.org/abs/2406.00783v2
|
https://arxiv.org/pdf/2406.00783v2.pdf
|
https://github.com/purdue-m2/ai-face-fairnessbench
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/automatic-brain-tumor-segmentation-using-1
|
Automatic Brain Tumor Segmentation using Cascaded Anisotropic Convolutional Neural Networks
|
1709.00382
|
http://arxiv.org/abs/1709.00382v2
|
http://arxiv.org/pdf/1709.00382v2.pdf
|
https://github.com/taigw/brats18_docker
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/supportnet-solving-catastrophic-forgetting-in
|
SupportNet: solving catastrophic forgetting in class incremental learning with support data
|
1806.02942
|
http://arxiv.org/abs/1806.02942v3
|
http://arxiv.org/pdf/1806.02942v3.pdf
|
https://github.com/lykaust15/SupportNet
| true
| true
| true
|
tf
|
https://paperswithcode.com/paper/deep-k-means-jointly-clustering-with-k-means
|
Deep $k$-Means: Jointly clustering with $k$-Means and learning representations
|
1806.10069
|
http://arxiv.org/abs/1806.10069v2
|
http://arxiv.org/pdf/1806.10069v2.pdf
|
https://github.com/MaziarMF/deep-k-means
| true
| true
| true
|
tf
|
https://paperswithcode.com/paper/infrared-and-visible-image-fusion-using-a
|
Infrared and Visible Image Fusion using a Deep Learning Framework
|
1804.06992
|
http://arxiv.org/abs/1804.06992v4
|
http://arxiv.org/pdf/1804.06992v4.pdf
|
https://github.com/exceptionLi/imagefusion_deeplearning
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/a-review-on-deep-learning-techniques-applied
|
A Review on Deep Learning Techniques Applied to Semantic Segmentation
|
1704.06857
|
http://arxiv.org/abs/1704.06857v1
|
http://arxiv.org/pdf/1704.06857v1.pdf
|
https://github.com/demul/image_segmentation_project
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/apply-artificial-neural-network-to-solving
|
Apply Artificial Neural Network to Solving Manpower Scheduling Problem
|
2105.03541
|
https://arxiv.org/abs/2105.03541v1
|
https://arxiv.org/pdf/2105.03541v1.pdf
|
https://github.com/ChineseBest/AT-504
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/spectral-leakage-and-rethinking-the-kernel
|
Spectral Leakage and Rethinking the Kernel Size in CNNs
|
2101.10143
|
https://arxiv.org/abs/2101.10143v2
|
https://arxiv.org/pdf/2101.10143v2.pdf
|
https://github.com/EvgenyKashin/non-leaking-conv
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/paracosm-a-language-and-tool-for-testing
|
Paracosm: A Language and Tool for Testing Autonomous Driving Systems
|
1902.01084
|
https://arxiv.org/abs/1902.01084v2
|
https://arxiv.org/pdf/1902.01084v2.pdf
|
https://gitlab.mpi-sws.org/mathur/paracosm
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/interpretable-and-compositional-relation
|
Interpretable and Compositional Relation Learning by Joint Training with an Autoencoder
|
1805.09547
|
http://arxiv.org/abs/1805.09547v1
|
http://arxiv.org/pdf/1805.09547v1.pdf
|
https://github.com/tianran/glimvec
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/a-counterexample-to-the-unit-conjecture-for
|
A counterexample to the unit conjecture for group rings
|
2102.11818
|
https://arxiv.org/abs/2102.11818v4
|
https://arxiv.org/pdf/2102.11818v4.pdf
|
https://github.com/alex-konovalov/Kaplansky-units-counterexample
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/lan-learning-adaptive-neighbors-for-real-time
|
LAN: Learning Adaptive Neighbors for Real-Time Insider Threat Detection
|
2403.09209
|
https://arxiv.org/abs/2403.09209v2
|
https://arxiv.org/pdf/2403.09209v2.pdf
|
https://github.com/li1neo/lan
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/estimating-missing-data-in-temporal-data
|
Estimating Missing Data in Temporal Data Streams Using Multi-directional Recurrent Neural Networks
|
1711.08742
|
http://arxiv.org/abs/1711.08742v1
|
http://arxiv.org/pdf/1711.08742v1.pdf
|
https://github.com/jsyoon0823/MRNN
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/terahertz-field-induced-near-cutoff-even
|
Terahertz field induced near-cutoff even-order harmonics in femtosecond laser
|
2008.10017
|
https://arxiv.org/abs/2008.10017v2
|
https://arxiv.org/pdf/2008.10017v2.pdf
|
https://github.com/timy/NCEH-THz
| true
| false
| true
|
none
|
https://paperswithcode.com/paper/pointer-sentinel-mixture-models
|
Pointer Sentinel Mixture Models
|
1609.07843
|
http://arxiv.org/abs/1609.07843v1
|
http://arxiv.org/pdf/1609.07843v1.pdf
|
https://github.com/mikekestemont/pie
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/edgeconnect-generative-image-inpainting-with
|
EdgeConnect: Generative Image Inpainting with Adversarial Edge Learning
|
1901.00212
|
http://arxiv.org/abs/1901.00212v3
|
http://arxiv.org/pdf/1901.00212v3.pdf
|
https://github.com/youyuge34/Anime-InPainting
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/a-neural-representation-of-sketch-drawings
|
A Neural Representation of Sketch Drawings
|
1704.03477
|
http://arxiv.org/abs/1704.03477v4
|
http://arxiv.org/pdf/1704.03477v4.pdf
|
https://github.com/cpmpercussion/keras-mdn-layer
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/falkon-an-optimal-large-scale-kernel-method
|
FALKON: An Optimal Large Scale Kernel Method
|
1705.10958
|
http://arxiv.org/abs/1705.10958v3
|
http://arxiv.org/pdf/1705.10958v3.pdf
|
https://github.com/enry12/FALKON
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/unpaired-image-to-image-translation-using
|
Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks
|
1703.10593
|
https://arxiv.org/abs/1703.10593v7
|
https://arxiv.org/pdf/1703.10593v7.pdf
|
https://github.com/taivu1998/GANime
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/mce-2018-the-1st-multi-target-speaker
|
MCE 2018: The 1st Multi-target Speaker Detection and Identification Challenge Evaluation (MCE) Plan, Dataset and Baseline System
|
1807.06663
|
http://arxiv.org/abs/1807.06663v1
|
http://arxiv.org/pdf/1807.06663v1.pdf
|
https://github.com/swshon/multi-speakerID
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/fairness-through-robustness-investigating
|
Fairness Through Robustness: Investigating Robustness Disparity in Deep Learning
|
2006.12621
|
https://arxiv.org/abs/2006.12621v4
|
https://arxiv.org/pdf/2006.12621v4.pdf
|
https://github.com/nvedant07/Fairness-Through-Robustness
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/image-to-image-translation-with-conditional
|
Image-to-Image Translation with Conditional Adversarial Networks
|
1611.07004
|
http://arxiv.org/abs/1611.07004v3
|
http://arxiv.org/pdf/1611.07004v3.pdf
|
https://github.com/taivu1998/GANime
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/190407947
|
Fast Radio Bursts
|
1904.07947
|
http://arxiv.org/abs/1904.07947v1
|
http://arxiv.org/pdf/1904.07947v1.pdf
|
https://github.com/kiyo-masui/burst_search
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/fully-convolutional-networks-for-semantic-1
|
Fully Convolutional Networks for Semantic Segmentation
|
1411.4038
|
http://arxiv.org/abs/1411.4038v2
|
http://arxiv.org/pdf/1411.4038v2.pdf
|
https://github.com/demul/image_segmentation_project
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/backpropagation-through-the-void-optimizing
|
Backpropagation through the Void: Optimizing control variates for black-box gradient estimation
|
1711.00123
|
http://arxiv.org/abs/1711.00123v3
|
http://arxiv.org/pdf/1711.00123v3.pdf
|
https://github.com/TalkToTheGAN/REGAN
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/generalized-system-identification-with-stable
|
Generalized system identification with stable spline kernels
|
1309.7857
|
http://arxiv.org/abs/1309.7857v4
|
http://arxiv.org/pdf/1309.7857v4.pdf
|
https://github.com/saravkin/IPsolve
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/overlap-aware-low-latency-online-speaker
|
Overlap-aware low-latency online speaker diarization based on end-to-end local segmentation
|
2109.06483
|
https://arxiv.org/abs/2109.06483v1
|
https://arxiv.org/pdf/2109.06483v1.pdf
|
https://github.com/juanmc2005/streamingspeakerdiarization
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/realtime-multi-person-2d-pose-estimation
|
Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields
|
1611.08050
|
http://arxiv.org/abs/1611.08050v2
|
http://arxiv.org/pdf/1611.08050v2.pdf
|
https://github.com/sananand007/Xrelab
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/densely-connected-convolutional-networks
|
Densely Connected Convolutional Networks
|
1608.06993
|
http://arxiv.org/abs/1608.06993v5
|
http://arxiv.org/pdf/1608.06993v5.pdf
|
https://github.com/jonnor/datascience-master
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/crisismmd-multimodal-twitter-datasets-from
|
CrisisMMD: Multimodal Twitter Datasets from Natural Disasters
|
1805.00713
|
https://arxiv.org/abs/1805.00713v1
|
https://arxiv.org/pdf/1805.00713v1.pdf
|
https://github.com/firojalam/multimodal_social_media
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/openai-gym
|
OpenAI Gym
|
1606.01540
|
http://arxiv.org/abs/1606.01540v1
|
http://arxiv.org/pdf/1606.01540v1.pdf
|
https://github.com/n0o8o0n1um/Gym1
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/semi-adversarial-networks-convolutional
|
Semi-Adversarial Networks: Convolutional Autoencoders for Imparting Privacy to Face Images
|
1712.00321
|
http://arxiv.org/abs/1712.00321v3
|
http://arxiv.org/pdf/1712.00321v3.pdf
|
https://github.com/iPRoBe-lab/semi-adversarial-networks
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/learning-to-generate-samples-from-noise
|
Learning to Generate Samples from Noise through Infusion Training
|
1703.06975
|
http://arxiv.org/abs/1703.06975v1
|
http://arxiv.org/pdf/1703.06975v1.pdf
|
https://github.com/bordesf/Infusion
| false
| false
| true
|
none
|
Subsets and Splits
Framework Repo Connectivity Analysis
Reveals the number of official and unofficial repositories and papers associated with different frameworks, highlighting the most connected ones.
Deduplicated Paper-Code Links
This query provides a detailed and organized list of repositories linked to single papers, highlighting official status and mention sources, which is useful for understanding the relationship between papers and their corresponding repositories.
Paper Repo Counts & Distribution
Provides detailed statistics on the distribution of papers across different numbers of repositories, highlighting the percentage of papers with multiple repositories.
Quantum Papers with Code Links
Lists quantum-related papers with their titles, arXiv IDs, frameworks, and code repository links, providing a valuable resource for researchers interested in quantum computing.
Financial Stock Price Prediction
Finds papers related to stock prices, financial markets, and predictions, providing a focused subset for further analysis.
SQL Console for pwc-archive/links-between-paper-and-code
Retrieves specific details about a single paper by its arXiv ID, providing limited insight into the dataset.
Search for YOLO Links
Retrieves a limited set of records related to YOLO, providing basic information about papers and repositories but without deeper analysis.
Prompt Optimization and Personalization
Retrieves a limited set of papers with titles containing specific keywords related to prompt optimization and personalization, providing basic filtering of the dataset.