paper_url
stringlengths 36
81
| paper_title
stringlengths 1
242
⌀ | paper_arxiv_id
stringlengths 9
16
⌀ | paper_url_abs
stringlengths 18
314
| paper_url_pdf
stringlengths 21
935
⌀ | repo_url
stringlengths 26
200
| is_official
bool 2
classes | mentioned_in_paper
bool 2
classes | mentioned_in_github
bool 2
classes | framework
stringclasses 9
values |
|---|---|---|---|---|---|---|---|---|---|
https://paperswithcode.com/paper/knowledge-guided-prompt-learning-for-request
|
Knowledge-Guided Prompt Learning for Request Quality Assurance in Public Code Review
|
2410.21673
|
https://arxiv.org/abs/2410.21673v2
|
https://arxiv.org/pdf/2410.21673v2.pdf
|
https://github.com/wut-idea/kp-pcr
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/knowledge-fusion-of-large-language-models
|
Knowledge Fusion of Large Language Models
|
2401.10491
|
https://arxiv.org/abs/2401.10491v2
|
https://arxiv.org/pdf/2401.10491v2.pdf
|
https://github.com/fanqiwan/fusellm
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/weighted-reward-preference-optimization-for
|
Weighted-Reward Preference Optimization for Implicit Model Fusion
|
2412.03187
|
https://arxiv.org/abs/2412.03187v1
|
https://arxiv.org/pdf/2412.03187v1.pdf
|
https://github.com/fanqiwan/fusellm
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/advancing-learnable-multi-agent-pathfinding
|
Advancing Learnable Multi-Agent Pathfinding Solvers with Active Fine-Tuning
|
2506.23793
|
https://arxiv.org/abs/2506.23793v1
|
https://arxiv.org/pdf/2506.23793v1.pdf
|
https://github.com/Cognitive-AI-Systems/MAPF-GPT
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/a-little-less-conversation-a-little-more
|
A little less conversation, a little more action, please: Investigating the physical common-sense of LLMs in a 3D embodied environment
|
2410.23242
|
https://arxiv.org/abs/2410.23242v2
|
https://arxiv.org/pdf/2410.23242v2.pdf
|
https://github.com/kinds-of-intelligence-cfi/llm-aai
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/v2x-assisted-distributed-computing-and
|
V2X-Assisted Distributed Computing and Control Framework for Connected and Automated Vehicles under Ramp Merging Scenario
|
2410.22987
|
https://arxiv.org/abs/2410.22987v1
|
https://arxiv.org/pdf/2410.22987v1.pdf
|
https://github.com/qiongwu86/v2x-assisted-distributed-computing-and-control-framework-for-connected-and-automated-vehicles
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/100k-or-100-days-trade-offs-when-pre-training
|
$100K or 100 Days: Trade-offs when Pre-Training with Academic Resources
|
2410.23261
|
https://arxiv.org/abs/2410.23261v1
|
https://arxiv.org/pdf/2410.23261v1.pdf
|
https://github.com/apoorvkh/academic-pretraining
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/misspecification-uncertainties-in-near
|
Parameter uncertainties for imperfect surrogate models in the low-noise regime
|
2402.01810
|
https://arxiv.org/abs/2402.01810v5
|
https://arxiv.org/pdf/2402.01810v5.pdf
|
https://github.com/tomswinburne/POPS-Regression
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/latent-diffusion-implicit-amplification
|
Latent Diffusion, Implicit Amplification: Efficient Continuous-Scale Super-Resolution for Remote Sensing Images
|
2410.22830
|
https://arxiv.org/abs/2410.22830v1
|
https://arxiv.org/pdf/2410.22830v1.pdf
|
https://github.com/hanlinwu/E2DiffSR
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/exactly-minimax-optimal-locally
|
Exactly Minimax-Optimal Locally Differentially Private Sampling
|
2410.22699
|
https://arxiv.org/abs/2410.22699v1
|
https://arxiv.org/pdf/2410.22699v1.pdf
|
https://github.com/phy811/Optimal-LDP-Sampling
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/statistical-quantification-of-confounding
|
Statistical quantification of confounding bias in predictive modelling
|
2111.00814
|
https://arxiv.org/abs/2111.00814v1
|
https://arxiv.org/pdf/2111.00814v1.pdf
|
https://github.com/spisakt/mlconfound_manuscript
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/general-identifiability-and-achievability-for
|
General Identifiability and Achievability for Causal Representation Learning
|
2310.15450
|
https://arxiv.org/abs/2310.15450v2
|
https://arxiv.org/pdf/2310.15450v2.pdf
|
https://github.com/bvarici/score-general-id-crl
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/mle-dojo-interactive-environments-for
|
MLE-Dojo: Interactive Environments for Empowering LLM Agents in Machine Learning Engineering
|
2505.07782
|
https://arxiv.org/abs/2505.07782v1
|
https://arxiv.org/pdf/2505.07782v1.pdf
|
https://github.com/MLE-Dojo/MLE-Dojo
| true
| false
| true
|
none
|
https://paperswithcode.com/paper/neural-brain-a-neuroscience-inspired
|
Neural Brain: A Neuroscience-inspired Framework for Embodied Agents
|
2505.07634
|
https://arxiv.org/abs/2505.07634v2
|
https://arxiv.org/pdf/2505.07634v2.pdf
|
https://github.com/CNJianLiu/Neural-Brain-for-Embodied-Agents
| true
| false
| true
|
tf
|
https://paperswithcode.com/paper/refact-updating-text-to-image-models-by
|
ReFACT: Updating Text-to-Image Models by Editing the Text Encoder
|
2306.00738
|
https://arxiv.org/abs/2306.00738v2
|
https://arxiv.org/pdf/2306.00738v2.pdf
|
https://github.com/technion-cs-nlp/refact
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/can-llms-learn-by-teaching-a-preliminary
|
Can LLMs Learn by Teaching for Better Reasoning? A Preliminary Study
|
2406.14629
|
https://arxiv.org/abs/2406.14629v3
|
https://arxiv.org/pdf/2406.14629v3.pdf
|
https://github.com/imagination-research/lbt
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/reflexion-language-agents-with-verbal
|
Reflexion: Language Agents with Verbal Reinforcement Learning
|
2303.11366
|
https://arxiv.org/abs/2303.11366v4
|
https://arxiv.org/pdf/2303.11366v4.pdf
|
https://github.com/imagination-research/lbt
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/direct-preference-optimization-your-language
|
Direct Preference Optimization: Your Language Model is Secretly a Reward Model
|
2305.18290
|
https://arxiv.org/abs/2305.18290v3
|
https://arxiv.org/pdf/2305.18290v3.pdf
|
https://github.com/imagination-research/lbt
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/cv-cities-advancing-cross-view-geo
|
CV-Cities: Advancing Cross-View Geo-Localization in Global Cities
|
2411.12431
|
https://arxiv.org/abs/2411.12431v1
|
https://arxiv.org/pdf/2411.12431v1.pdf
|
https://github.com/gaoshuang98/cvcities
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/the-isomorphism-problem-for-ideal-class
|
The isomorphism problem for ideal class monoids of numerical semigroups
|
2311.15265
|
https://arxiv.org/abs/2311.15265v2
|
https://arxiv.org/pdf/2311.15265v2.pdf
|
https://github.com/numerical-semigroups/ideal-class-monoid
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/tensor-based-synchronization-and-the-low
|
Tensor-Based Synchronization and the Low-Rankness of the Block Trifocal Tensor
|
2409.09313
|
https://arxiv.org/abs/2409.09313v2
|
https://arxiv.org/pdf/2409.09313v2.pdf
|
https://github.com/dmiao153/trifocalsync
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/sugarcrepe-fixing-hackable-benchmarks-for-1
|
SugarCrepe: Fixing Hackable Benchmarks for Vision-Language Compositionality
|
2306.14610
|
https://arxiv.org/abs/2306.14610v1
|
https://arxiv.org/pdf/2306.14610v1.pdf
|
https://github.com/borisdayma/clip-jax
| false
| false
| true
|
jax
|
https://paperswithcode.com/paper/learning-to-edit-visual-programs-with-self
|
Learning to Edit Visual Programs with Self-Supervision
|
2406.02383
|
https://arxiv.org/abs/2406.02383v2
|
https://arxiv.org/pdf/2406.02383v2.pdf
|
https://github.com/rkjones4/vpi-edit
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/adaptive-length-image-tokenization-via
|
Adaptive Length Image Tokenization via Recurrent Allocation
|
2411.02393
|
https://arxiv.org/abs/2411.02393v1
|
https://arxiv.org/pdf/2411.02393v1.pdf
|
https://github.com/shivamduggal4/adaptive-length-tokenizer
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/mamt-4-multi-view-attention-networks-for
|
MamT$^4$: Multi-view Attention Networks for Mammography Cancer Classification
|
2411.01669
|
https://arxiv.org/abs/2411.01669v1
|
https://arxiv.org/pdf/2411.01669v1.pdf
|
https://github.com/ispras/mammo_crop
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/unified-speech-recognition-a-single-model-for
|
Unified Speech Recognition: A Single Model for Auditory, Visual, and Audiovisual Inputs
|
2411.02256
|
https://arxiv.org/abs/2411.02256v1
|
https://arxiv.org/pdf/2411.02256v1.pdf
|
https://github.com/ahaliassos/usr
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/finding-influential-cores-via-normalized
|
Finding Influential Cores via Normalized Ricci Flows in Directed and Undirected Hypergraphs with Applications
|
2502.16382
|
https://arxiv.org/abs/2502.16382v1
|
https://arxiv.org/pdf/2502.16382v1.pdf
|
https://github.com/iamprith/Ricci-Flow-on-Hypergraphs
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/hamiltonian-simulation-based-quantum-selected
|
Hamiltonian simulation-based quantum-selected configuration interaction for large-scale electronic structure calculations with a quantum computer
|
2412.07218
|
https://arxiv.org/abs/2412.07218v2
|
https://arxiv.org/pdf/2412.07218v2.pdf
|
https://github.com/qiskit/qiskit-addon-sqd
| true
| true
| true
|
jax
|
https://paperswithcode.com/paper/crepe-open-domain-question-answering-with
|
CREPE: Open-Domain Question Answering with False Presuppositions
|
2211.17257
|
https://arxiv.org/abs/2211.17257v1
|
https://arxiv.org/pdf/2211.17257v1.pdf
|
https://github.com/velocitycavalry/crepe
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/ev-3dod-pushing-the-temporal-boundaries-of-3d
|
Ev-3DOD: Pushing the Temporal Boundaries of 3D Object Detection with Event Cameras
|
2502.19630
|
https://arxiv.org/abs/2502.19630v1
|
https://arxiv.org/pdf/2502.19630v1.pdf
|
https://github.com/mickeykang16/ev3dod
| true
| true
| false
|
jax
|
https://paperswithcode.com/paper/critic-guided-decision-transformer-for
|
Critic-Guided Decision Transformer for Offline Reinforcement Learning
|
2312.13716
|
https://arxiv.org/abs/2312.13716v1
|
https://arxiv.org/pdf/2312.13716v1.pdf
|
https://github.com/sharkwyf/cgdt
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/newton-puiseux-analysis-for-interpretability
|
Newton-Puiseux Analysis for Interpretability and Calibration of Complex-Valued Neural Networks
|
2504.19176
|
https://arxiv.org/abs/2504.19176v1
|
https://arxiv.org/pdf/2504.19176v1.pdf
|
https://github.com/piotrmgs/puiseux-cvnn
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/mdpe-a-multimodal-deception-dataset-with
|
MDPE: A Multimodal Deception Dataset with Personality and Emotional Characteristics
|
2407.12274
|
https://arxiv.org/abs/2407.12274v1
|
https://arxiv.org/pdf/2407.12274v1.pdf
|
https://github.com/cai-cong/MER25_personality
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/learning-interaction-aware-3d-gaussian
|
Learning Interaction-aware 3D Gaussian Splatting for One-shot Hand Avatars
|
2410.08840
|
https://arxiv.org/abs/2410.08840v1
|
https://arxiv.org/pdf/2410.08840v1.pdf
|
https://github.com/xuanhuang0/guassianhand
| true
| true
| true
|
jax
|
https://paperswithcode.com/paper/breast-tumor-classification-using
|
Breast Tumor Classification Using EfficientNet Deep Learning Model
|
2411.17870
|
https://arxiv.org/abs/2411.17870v1
|
https://arxiv.org/pdf/2411.17870v1.pdf
|
https://github.com/majid9418/Breast-Tumor-Classification-Histopathological
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/exo-2-growing-a-scheduling-language
|
Exo 2: Growing a Scheduling Language
|
2411.07211
|
https://arxiv.org/abs/2411.07211v4
|
https://arxiv.org/pdf/2411.07211v4.pdf
|
https://github.com/exo-lang/exoblas
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/optimal-reactive-operation-of-general
|
Optimal Reactive Operation of General Topology Supply Chain and Manufacturing Networks under Disruptions
|
2412.08046
|
https://arxiv.org/abs/2412.08046v1
|
https://arxiv.org/pdf/2412.08046v1.pdf
|
https://github.com/dovallev/supply_chain_disruptions
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/revisiting-neural-retrieval-on-accelerators
|
Revisiting Neural Retrieval on Accelerators
|
2306.04039
|
https://arxiv.org/abs/2306.04039v1
|
https://arxiv.org/pdf/2306.04039v1.pdf
|
https://github.com/facebookresearch/generative-recommenders
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/turning-dross-into-gold-loss-is-bert4rec
|
Turning Dross Into Gold Loss: is BERT4Rec really better than SASRec?
|
2309.07602
|
https://arxiv.org/abs/2309.07602v1
|
https://arxiv.org/pdf/2309.07602v1.pdf
|
https://github.com/facebookresearch/generative-recommenders
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/actions-speak-louder-than-words-trillion
|
Actions Speak Louder than Words: Trillion-Parameter Sequential Transducers for Generative Recommendations
|
2402.17152
|
https://arxiv.org/abs/2402.17152v3
|
https://arxiv.org/pdf/2402.17152v3.pdf
|
https://github.com/facebookresearch/generative-recommenders
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/review-of-deep-learning-models-for-crypto
|
Review of deep learning models for crypto price prediction: implementation and evaluation
|
2405.11431
|
https://arxiv.org/abs/2405.11431v2
|
https://arxiv.org/pdf/2405.11431v2.pdf
|
https://github.com/sydney-machine-learning/quantiledeeplearning
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/response-estimation-and-system-identification
|
Response Estimation and System Identification of Dynamical Systems via Physics-Informed Neural Networks
|
2410.01340
|
https://arxiv.org/abs/2410.01340v2
|
https://arxiv.org/pdf/2410.01340v2.pdf
|
https://github.com/marcusha94/structural-dynamics-pinns
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/curvature-constrained-vector-field-for-motion
|
Curvature-Constrained Vector Field for Motion Planning of Nonholonomic Robots
|
2504.02852
|
https://arxiv.org/abs/2504.02852v1
|
https://arxiv.org/pdf/2504.02852v1.pdf
|
https://github.com/y1kee/cvf-for-nonholonomic-motion-planning
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/meshmask-physics-based-simulations-with
|
MeshMask: Physics-Based Simulations with Masked Graph Neural Networks
|
2501.08738
|
https://arxiv.org/abs/2501.08738v3
|
https://arxiv.org/pdf/2501.08738v3.pdf
|
https://github.com/DonsetPG/graph-physics
| true
| false
| true
|
jax
|
https://paperswithcode.com/paper/bot-sort-robust-associations-multi-pedestrian
|
BoT-SORT: Robust Associations Multi-Pedestrian Tracking
|
2206.14651
|
https://arxiv.org/abs/2206.14651v2
|
https://arxiv.org/pdf/2206.14651v2.pdf
|
https://github.com/airotau/pointpillarshailoinnoviz
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/a-spectral-approach-for-quasinormal
|
A Spectral Approach for Quasinormal Frequencies of Noncommutative Geometry-inspired Wormholes
|
2504.02370
|
https://arxiv.org/abs/2504.02370v1
|
https://arxiv.org/pdf/2504.02370v1.pdf
|
https://github.com/dutykh/ncwh
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/towards-all-in-one-medical-image-re
|
Towards All-in-One Medical Image Re-Identification
|
2503.08173
|
https://arxiv.org/abs/2503.08173v1
|
https://arxiv.org/pdf/2503.08173v1.pdf
|
https://github.com/tianyuan168326/all-in-one-medreid-pytorch
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/spargeattn-accurate-sparse-attention
|
SpargeAttention: Accurate and Training-free Sparse Attention Accelerating Any Model Inference
|
2502.18137
|
https://arxiv.org/abs/2502.18137v5
|
https://arxiv.org/pdf/2502.18137v5.pdf
|
https://github.com/thu-ml/spargeattn
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/multi-grid-graph-neural-networks-with-self
|
Multi-Grid Graph Neural Networks with Self-Attention for Computational Mechanics
|
2409.11899
|
https://arxiv.org/abs/2409.11899v1
|
https://arxiv.org/pdf/2409.11899v1.pdf
|
https://github.com/DonsetPG/graph-physics
| true
| false
| true
|
jax
|
https://paperswithcode.com/paper/learning-mesh-based-simulation-with-graph-1
|
Learning Mesh-Based Simulation with Graph Networks
|
2010.03409
|
https://arxiv.org/abs/2010.03409v4
|
https://arxiv.org/pdf/2010.03409v4.pdf
|
https://github.com/DonsetPG/graph-physics
| false
| false
| true
|
jax
|
https://paperswithcode.com/paper/discrete-neural-nets-and-polymorphic-learning
|
Discrete neural nets and polymorphic learning
|
2308.00677
|
https://arxiv.org/abs/2308.00677v2
|
https://arxiv.org/pdf/2308.00677v2.pdf
|
https://github.com/caten2/tripods2021ua
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/subjective-visual-quality-assessment-for-high
|
Subjective Visual Quality Assessment for High-Fidelity Learning-Based Image Compression
|
2504.06301
|
https://arxiv.org/abs/2504.06301v2
|
https://arxiv.org/pdf/2504.06301v2.pdf
|
https://github.com/jpeg-aic/dataset-jpeg-ai-sdr25
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/pomato-marrying-pointmap-matching-with
|
POMATO: Marrying Pointmap Matching with Temporal Motion for Dynamic 3D Reconstruction
|
2504.05692
|
https://arxiv.org/abs/2504.05692v1
|
https://arxiv.org/pdf/2504.05692v1.pdf
|
https://github.com/wyddmw/pomato
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/correlation-of-frechet-audio-distance-with
|
Correlation of Fréchet Audio Distance With Human Perception of Environmental Audio Is Embedding Dependant
|
2403.17508
|
https://arxiv.org/abs/2403.17508v1
|
https://arxiv.org/pdf/2403.17508v1.pdf
|
https://github.com/YoonjinXD/kadtk
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/adapting-frechet-audio-distance-for
|
Adapting Frechet Audio Distance for Generative Music Evaluation
|
2311.01616
|
https://arxiv.org/abs/2311.01616v2
|
https://arxiv.org/pdf/2311.01616v2.pdf
|
https://github.com/YoonjinXD/kadtk
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/detox-toxic-subspace-projection-for-model
|
Model Editing as a Robust and Denoised variant of DPO: A Case Study on Toxicity
|
2405.13967
|
https://arxiv.org/abs/2405.13967v4
|
https://arxiv.org/pdf/2405.13967v4.pdf
|
https://github.com/uppaal/detox-edit
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/self-detoxifying-language-models-via
|
Self-Detoxifying Language Models via Toxification Reversal
|
2310.09573
|
https://arxiv.org/abs/2310.09573v1
|
https://arxiv.org/pdf/2310.09573v1.pdf
|
https://github.com/uppaal/detox-edit
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/the-gender-gap-pipeline-a-gender-aware
|
The Gender-GAP Pipeline: A Gender-Aware Polyglot Pipeline for Gender Characterisation in 55 Languages
|
2308.16871
|
https://arxiv.org/abs/2308.16871v1
|
https://arxiv.org/pdf/2308.16871v1.pdf
|
https://github.com/facebookresearch/responsiblenlp
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/i-m-sorry-to-hear-that-finding-bias-in
|
"I'm sorry to hear that": Finding New Biases in Language Models with a Holistic Descriptor Dataset
|
2205.09209
|
https://arxiv.org/abs/2205.09209v2
|
https://arxiv.org/pdf/2205.09209v2.pdf
|
https://github.com/facebookresearch/responsiblenlp
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/improving-model-evaluation-using-smart
|
Improving Model Evaluation using SMART Filtering of Benchmark Datasets
|
2410.20245
|
https://arxiv.org/abs/2410.20245v1
|
https://arxiv.org/pdf/2410.20245v1.pdf
|
https://github.com/facebookresearch/responsiblenlp
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/sparkle-a-statistical-learning-toolkit-for
|
Sparklen: A Statistical Learning Toolkit for High-Dimensional Hawkes Processes in Python
|
2502.18979
|
https://arxiv.org/abs/2502.18979v2
|
https://arxiv.org/pdf/2502.18979v2.pdf
|
https://github.com/romain-e-lacoste/sparklen
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/a-weak-supervision-learning-approach-towards
|
A Weak Supervision Learning Approach Towards an Equitable Mobility Estimation
|
2505.04229
|
https://arxiv.org/abs/2505.04229v2
|
https://arxiv.org/pdf/2505.04229v2.pdf
|
https://github.com/societal-computing/equitable_mobility_estimation
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/mechanically-programming-the-cross-sectional
|
Mechanically Programming the Cross-Sectional Shape of Soft Growing Robotic Structures for Patient Transfer
|
2505.11593
|
https://arxiv.org/abs/2505.11593v2
|
https://arxiv.org/pdf/2505.11593v2.pdf
|
https://github.com/kentaro-barhydt/softGrowingRobotCrossSectionProgramming
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/m2oe-multimodal-collaborative-expert-peptide
|
M2oE: Multimodal Collaborative Expert Peptide Model
|
2411.15208
|
https://arxiv.org/abs/2411.15208v1
|
https://arxiv.org/pdf/2411.15208v1.pdf
|
https://github.com/goldzzmj/M2oE
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/step-video-t2v-technical-report-the-practice
|
Step-Video-T2V Technical Report: The Practice, Challenges, and Future of Video Foundation Model
|
2502.10248
|
https://arxiv.org/abs/2502.10248v1
|
https://arxiv.org/pdf/2502.10248v1.pdf
|
https://github.com/stepfun-ai/step-video-ti2v
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/retworkx-a-high-performance-graph-library-for
|
rustworkx: A High-Performance Graph Library for Python
|
2110.15221
|
https://arxiv.org/abs/2110.15221v4
|
https://arxiv.org/pdf/2110.15221v4.pdf
|
https://github.com/qiskit/rustworkx
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/spectral-density-estimation-for-random-fields
|
Spectral Density Estimation for Random Fields via Periodic Embeddings
|
1710.08978
|
https://arxiv.org/abs/1710.08978v2
|
https://arxiv.org/pdf/1710.08978v2.pdf
|
https://github.com/joeguinness/npspec
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/image-to-image-mlp-mixer-for-image-1
|
Image-to-Image MLP-mixer for Image Reconstruction
|
2202.02018
|
https://arxiv.org/abs/2202.02018v1
|
https://arxiv.org/pdf/2202.02018v1.pdf
|
https://github.com/mli-lab/imaging_mlps
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/distributed-node-covering-optimization-for
|
Distributed Node Covering Optimization for Large Scale Networks and Its Application on Social Advertising
|
2211.08738
|
https://arxiv.org/abs/2211.08738v1
|
https://arxiv.org/pdf/2211.08738v1.pdf
|
https://github.com/pobooo/pobooo.github.io
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/friend-recall-in-online-games-via-pre
|
Friend Ranking in Online Games via Pre-training Edge Transformers
|
2302.10043
|
https://arxiv.org/abs/2302.10043v4
|
https://arxiv.org/pdf/2302.10043v4.pdf
|
https://github.com/pobooo/pobooo.github.io
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/numerical-relativity-using-a-generalized
|
Numerical Relativity Using a Generalized Harmonic Decomposition
|
gr-qc/0407110
|
https://arxiv.org/abs/gr-qc/0407110v2
|
https://arxiv.org/pdf/gr-qc/0407110v2.pdf
|
https://github.com/alejandroc137/ScalarWaveEvolution
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/comprehensive-analysis-of-spherical-bubble
|
Comprehensive analysis of spherical bubble oscillations and shock wave emission in laser-induced cavitation
|
2109.04372
|
https://arxiv.org/abs/2109.04372v1
|
https://arxiv.org/pdf/2109.04372v1.pdf
|
https://github.com/X-X-Liang/LIBDAR
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/expressive-higher-order-link-prediction
|
Expressive Higher-Order Link Prediction through Hypergraph Symmetry Breaking
|
2402.11339
|
https://arxiv.org/abs/2402.11339v2
|
https://arxiv.org/pdf/2402.11339v2.pdf
|
https://github.com/simonzhang00/hypergraphsymmetrybreaking
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/focus-towards-universal-foreground
|
FOCUS: Towards Universal Foreground Segmentation
|
2501.05238
|
https://arxiv.org/abs/2501.05238v1
|
https://arxiv.org/pdf/2501.05238v1.pdf
|
https://github.com/geshang777/FOCUS
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/cevit-copula-enhanced-vision-transformer-in
|
CeViT: Copula-Enhanced Vision Transformer in multi-task learning and bi-group image covariates with an application to myopia screening
|
2501.06540
|
https://arxiv.org/abs/2501.06540v1
|
https://arxiv.org/pdf/2501.06540v1.pdf
|
https://github.com/silent618/cevit
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/analytical-and-numerical-solutions-to-the
|
Analytical and numerical solutions to the three-phase Stefan problem with simultaneous occurrences of melting, solidification, boiling, and condensation phenomena
|
2503.06360
|
https://arxiv.org/abs/2503.06360v1
|
https://arxiv.org/pdf/2503.06360v1.pdf
|
https://github.com/amneetb/ThreePhaseStefan
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/intra-class-patch-swap-for-self-distillation
|
Intra-class Patch Swap for Self-Distillation
|
2505.14124
|
https://arxiv.org/abs/2505.14124v1
|
https://arxiv.org/pdf/2505.14124v1.pdf
|
https://github.com/hchoi71/intra-class-patch-swap
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/automatic-determination-of-quasicrystalline
|
Automatic determination of quasicrystalline patterns from microscopy images
|
2503.05472
|
https://arxiv.org/abs/2503.05472v1
|
https://arxiv.org/pdf/2503.05472v1.pdf
|
https://github.com/QuantumMaterialsModelling/AiSurf-Automated-Identification-of-Surface-images
| true
| false
| true
|
none
|
https://paperswithcode.com/paper/domain-knowledge-informed-self-supervised
|
Domain Knowledge-Informed Self-Supervised Representations for Workout Form Assessment
|
2202.14019
|
https://arxiv.org/abs/2202.14019v2
|
https://arxiv.org/pdf/2202.14019v2.pdf
|
https://github.com/ParitoshParmar/Fitness-AQA
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/structured-unrestricted-rank-matrices-for
|
Structured Unrestricted-Rank Matrices for Parameter Efficient Fine-tuning
|
2406.17740
|
https://arxiv.org/abs/2406.17740v3
|
https://arxiv.org/pdf/2406.17740v3.pdf
|
https://github.com/arijitthegame/structured-matrices-peft
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/security-properties-for-open-source-hardware
|
Security Properties for Open-Source Hardware Designs
|
2412.08769
|
https://arxiv.org/abs/2412.08769v2
|
https://arxiv.org/pdf/2412.08769v2.pdf
|
https://github.com/HWSec-UNC/verification-benchmarks
| true
| false
| true
|
none
|
https://paperswithcode.com/paper/anisotropic-induced-polarization-modeling
|
Anisotropic induced polarization modeling with neural networks and effective medium theory
|
2402.11313
|
https://arxiv.org/abs/2402.11313v1
|
https://arxiv.org/pdf/2402.11313v1.pdf
|
https://github.com/clberube/gemtip-ml
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/escaping-spurious-local-minima-of-low-rank
|
Accelerating nuclear-norm regularized low-rank matrix optimization through Burer-Monteiro decomposition
|
2204.14067
|
https://arxiv.org/abs/2204.14067v3
|
https://arxiv.org/pdf/2204.14067v3.pdf
|
https://github.com/leepei/bm-global
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/opportunities-and-risks-of-llms-for-scalable
|
Opportunities and Risks of LLMs for Scalable Deliberation with Polis
|
2306.11932
|
https://arxiv.org/abs/2306.11932v1
|
https://arxiv.org/pdf/2306.11932v1.pdf
|
https://github.com/compdemocracy/polis
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/decoding-with-limited-teacher-supervision
|
Decoding with Limited Teacher Supervision Requires Understanding When to Trust the Teacher
|
2406.18002
|
https://arxiv.org/abs/2406.18002v2
|
https://arxiv.org/pdf/2406.18002v2.pdf
|
https://github.com/hj-ok/declimsup
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/mfm-da-instance-aware-adaptor-and
|
MFM-DA: Instance-Aware Adaptor and Hierarchical Alignment for Efficient Domain Adaptation in Medical Foundation Models
|
2503.00802
|
https://arxiv.org/abs/2503.00802v1
|
https://arxiv.org/pdf/2503.00802v1.pdf
|
https://github.com/HopkinsKwong/MFM-DA
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/improve-robustness-of-eye-disease-detection
|
Enhance Eye Disease Detection using Learnable Probabilistic Discrete Latents in Machine Learning Architectures
|
2402.16865
|
https://arxiv.org/abs/2402.16865v3
|
https://arxiv.org/pdf/2402.16865v3.pdf
|
https://github.com/anirudhprabhakaran3/gflowout_on_eye_images
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/multi-level-optimal-transport-for-universal
|
Multi-Level Optimal Transport for Universal Cross-Tokenizer Knowledge Distillation on Language Models
|
2412.14528
|
https://arxiv.org/abs/2412.14528v2
|
https://arxiv.org/pdf/2412.14528v2.pdf
|
https://github.com/2018cx/multi-level-ot
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/the-law-of-the-unconscious-contrastive
|
The "Law" of the Unconscious Contrastive Learner: Probabilistic Alignment of Unpaired Modalities
|
2501.11326
|
https://arxiv.org/abs/2501.11326v1
|
https://arxiv.org/pdf/2501.11326v1.pdf
|
https://github.com/yongweiche/unconsciouscontrastivelearner
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/sageattention2-technical-report-accurate-4
|
SageAttention2: Efficient Attention with Thorough Outlier Smoothing and Per-thread INT4 Quantization
|
2411.10958
|
https://arxiv.org/abs/2411.10958v6
|
https://arxiv.org/pdf/2411.10958v6.pdf
|
https://github.com/thu-ml/spargeattn
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/multi-output-conformal-regression-a-unified
|
A Unified Comparative Study with Generalized Conformity Scores for Multi-Output Conformal Regression
|
2501.10533
|
https://arxiv.org/abs/2501.10533v2
|
https://arxiv.org/pdf/2501.10533v2.pdf
|
https://github.com/vekteur/multi-output-conformal-regression
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/accretion-and-ablation-in-deformable-solids
|
Accretion and Ablation in Deformable Solids using an Eulerian Formulation: A Finite Deformation Numerical Method
|
2502.16348
|
https://arxiv.org/abs/2502.16348v1
|
https://arxiv.org/pdf/2502.16348v1.pdf
|
https://github.com/Kiana-Naghibzadeh/SurfaceGrowth
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/collaborative-evaluation-exploring-the
|
Exploring the Reliability of Large Language Models as Customized Evaluators for Diverse NLP Tasks
|
2310.19740
|
https://arxiv.org/abs/2310.19740v2
|
https://arxiv.org/pdf/2310.19740v2.pdf
|
https://github.com/qtli/coeval
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/echodfkd-data-free-knowledge-distillation-for
|
EchoDFKD: Data-Free Knowledge Distillation for Cardiac Ultrasound Segmentation using Synthetic Data
|
2409.07566
|
https://arxiv.org/abs/2409.07566v2
|
https://arxiv.org/pdf/2409.07566v2.pdf
|
https://github.com/gregoirepetit/echodfkd
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/personax-a-recommendation-agent-oriented-user
|
PersonaX: A Recommendation Agent Oriented User Modeling Framework for Long Behavior Sequence
|
2503.02398
|
https://arxiv.org/abs/2503.02398v1
|
https://arxiv.org/pdf/2503.02398v1.pdf
|
https://github.com/ancientshi/personax
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/large-angle-convergent-beam-electron
|
Large-Angle Convergent-Beam Electron Diffraction Patterns via Conditional Generative Adversarial Networks
|
2503.02852
|
https://arxiv.org/abs/2503.02852v2
|
https://arxiv.org/pdf/2503.02852v2.pdf
|
https://github.com/wephy/ai-diffraction
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/towards-detecting-prompt-knowledge-gaps-for
|
Towards Detecting Prompt Knowledge Gaps for Improved LLM-guided Issue Resolution
|
2501.11709
|
https://arxiv.org/abs/2501.11709v3
|
https://arxiv.org/pdf/2501.11709v3.pdf
|
https://github.com/soar-lab/prompt-knowledge-gap
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/proportional-effect-models-for-continuous
|
A critical evaluation of longitudinal proportional effect models
|
2502.00214
|
https://arxiv.org/abs/2502.00214v3
|
https://arxiv.org/pdf/2502.00214v3.pdf
|
https://github.com/mcdonohue/propeffects
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/cocoevo-co-evolution-of-programs-and-test
|
CoCoEvo: Co-Evolution of Programs and Test Cases to Enhance Code Generation
|
2502.10802
|
https://arxiv.org/abs/2502.10802v1
|
https://arxiv.org/pdf/2502.10802v1.pdf
|
https://github.com/lbaf23/llm-cocoevo
| false
| false
| false
|
none
|
https://paperswithcode.com/paper/variational-diffusion-posterior-sampling-with
|
Variational Diffusion Posterior Sampling with Midpoint Guidance
|
2410.09945
|
https://arxiv.org/abs/2410.09945v2
|
https://arxiv.org/pdf/2410.09945v2.pdf
|
https://github.com/yazidjanati/mgps
| true
| true
| false
|
jax
|
Subsets and Splits
Framework Repo Connectivity Analysis
Reveals the number of official and unofficial repositories and papers associated with different frameworks, highlighting the most connected ones.
Deduplicated Paper-Code Links
This query provides a detailed and organized list of repositories linked to single papers, highlighting official status and mention sources, which is useful for understanding the relationship between papers and their corresponding repositories.
Paper Repo Counts & Distribution
Provides detailed statistics on the distribution of papers across different numbers of repositories, highlighting the percentage of papers with multiple repositories.
Quantum Papers with Code Links
Lists quantum-related papers with their titles, arXiv IDs, frameworks, and code repository links, providing a valuable resource for researchers interested in quantum computing.
Financial Stock Price Prediction
Finds papers related to stock prices, financial markets, and predictions, providing a focused subset for further analysis.
SQL Console for pwc-archive/links-between-paper-and-code
Retrieves specific details about a single paper by its arXiv ID, providing limited insight into the dataset.
Search for YOLO Links
Retrieves a limited set of records related to YOLO, providing basic information about papers and repositories but without deeper analysis.
Prompt Optimization and Personalization
Retrieves a limited set of papers with titles containing specific keywords related to prompt optimization and personalization, providing basic filtering of the dataset.