|
|
|
|
|
""" |
|
|
Decrypt MMSearch-Plus dataset after loading from HuggingFace Hub. |
|
|
|
|
|
This module provides two main functions: |
|
|
1. decrypt_dataset(): Decrypt an already-loaded Dataset object |
|
|
2. decrypt_mmsearch_plus(): Load from path and decrypt in one step |
|
|
|
|
|
Example usage with loaded dataset: |
|
|
from datasets import load_dataset |
|
|
from decrypt_after_load import decrypt_dataset |
|
|
|
|
|
# Load encrypted dataset |
|
|
encrypted_ds = load_dataset("Cie1/MMSearch-Plus", split='train') |
|
|
|
|
|
# Decrypt it |
|
|
decrypted_ds = decrypt_dataset(encrypted_ds, canary="MMSearch-Plus") |
|
|
|
|
|
Example usage with path: |
|
|
from decrypt_after_load import decrypt_mmsearch_plus |
|
|
|
|
|
# Load and decrypt in one step |
|
|
decrypted_ds = decrypt_mmsearch_plus( |
|
|
dataset_path="Cie1/MMSearch-Plus", |
|
|
canary="MMSearch-Plus" |
|
|
) |
|
|
""" |
|
|
|
|
|
import base64 |
|
|
import hashlib |
|
|
import argparse |
|
|
import io |
|
|
from pathlib import Path |
|
|
from datasets import load_dataset, load_from_disk, Dataset |
|
|
from PIL import Image |
|
|
from typing import Dict, Any |
|
|
import os |
|
|
import multiprocessing |
|
|
|
|
|
|
|
|
def derive_key(password: str, length: int) -> bytes: |
|
|
"""Derive encryption key from password using SHA-256.""" |
|
|
hasher = hashlib.sha256() |
|
|
hasher.update(password.encode()) |
|
|
key = hasher.digest() |
|
|
return key * (length // len(key)) + key[: length % len(key)] |
|
|
|
|
|
def decrypt_image(ciphertext_b64: str, password: str) -> Image.Image: |
|
|
"""Decrypt base64-encoded encrypted image bytes back to PIL Image.""" |
|
|
if not ciphertext_b64: |
|
|
return None |
|
|
|
|
|
try: |
|
|
encrypted = base64.b64decode(ciphertext_b64) |
|
|
key = derive_key(password, len(encrypted)) |
|
|
decrypted = bytes([a ^ b for a, b in zip(encrypted, key)]) |
|
|
|
|
|
|
|
|
img_buffer = io.BytesIO(decrypted) |
|
|
image = Image.open(img_buffer) |
|
|
return image |
|
|
except Exception as e: |
|
|
print(f"[Warning] Image decryption failed: {e}") |
|
|
return None |
|
|
|
|
|
def decrypt_text(ciphertext_b64: str, password: str) -> str: |
|
|
"""Decrypt base64-encoded ciphertext using XOR cipher with derived key.""" |
|
|
if not ciphertext_b64: |
|
|
return ciphertext_b64 |
|
|
|
|
|
try: |
|
|
encrypted = base64.b64decode(ciphertext_b64) |
|
|
key = derive_key(password, len(encrypted)) |
|
|
decrypted = bytes([a ^ b for a, b in zip(encrypted, key)]) |
|
|
return decrypted.decode('utf-8') |
|
|
except Exception as e: |
|
|
print(f"[Warning] Decryption failed: {e}") |
|
|
return ciphertext_b64 |
|
|
|
|
|
def decrypt_sample(sample: Dict[str, Any], canary: str) -> Dict[str, Any]: |
|
|
"""Decrypt text and image fields in a single sample using the provided canary password.""" |
|
|
decrypted_sample = sample.copy() |
|
|
|
|
|
|
|
|
text_fields = ['question', 'video_url', 'arxiv_id'] |
|
|
|
|
|
for field in text_fields: |
|
|
if field in sample and sample[field]: |
|
|
decrypted_sample[field] = decrypt_text(sample[field], canary) |
|
|
|
|
|
|
|
|
if 'answer' in sample and sample['answer']: |
|
|
decrypted_answers = [] |
|
|
for answer in sample['answer']: |
|
|
if answer: |
|
|
decrypted_answers.append(decrypt_text(answer, canary)) |
|
|
else: |
|
|
decrypted_answers.append(answer) |
|
|
decrypted_sample['answer'] = decrypted_answers |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return decrypted_sample |
|
|
|
|
|
def decrypt_dataset( |
|
|
encrypted_dataset: Dataset, |
|
|
canary: str, |
|
|
output_path: str = None, |
|
|
num_proc: int = None, |
|
|
batch_size: int = 1000, |
|
|
) -> Dataset: |
|
|
""" |
|
|
Decrypt an already-loaded dataset object. |
|
|
|
|
|
Args: |
|
|
encrypted_dataset: Already loaded Dataset object to decrypt |
|
|
canary: Canary string used for encryption |
|
|
output_path: Path to save decrypted dataset (optional) |
|
|
num_proc: Number of processes for parallel decryption (defaults to CPU count) |
|
|
batch_size: Batch size for Dataset.map |
|
|
""" |
|
|
if not isinstance(encrypted_dataset, Dataset): |
|
|
raise TypeError(f"Expected Dataset object, got {type(encrypted_dataset)}") |
|
|
|
|
|
if num_proc is None: |
|
|
|
|
|
cpu_count = multiprocessing.cpu_count() |
|
|
num_proc = max(1, cpu_count - 1) |
|
|
|
|
|
print(f"π Dataset contains {len(encrypted_dataset)} samples") |
|
|
print(f"π§ Features: {list(encrypted_dataset.features.keys())}") |
|
|
print(f"π Using canary string: {canary}") |
|
|
print(f"π§΅ Using {num_proc} processes, batch_size={batch_size}") |
|
|
|
|
|
|
|
|
def decrypt_batch(batch): |
|
|
decrypted_batch = dict(batch) |
|
|
|
|
|
text_fields = ['question', 'video_url', 'arxiv_id'] |
|
|
for field in text_fields: |
|
|
if field in batch: |
|
|
decrypted_batch[field] = [ |
|
|
decrypt_text(x, canary) if x else x |
|
|
for x in batch[field] |
|
|
] |
|
|
|
|
|
|
|
|
if 'answer' in batch: |
|
|
decrypted_answers = [] |
|
|
for answers in batch['answer']: |
|
|
if answers: |
|
|
decrypted_answers.append([ |
|
|
decrypt_text(a, canary) if a else a |
|
|
for a in answers |
|
|
]) |
|
|
else: |
|
|
decrypted_answers.append(answers) |
|
|
decrypted_batch['answer'] = decrypted_answers |
|
|
|
|
|
|
|
|
return decrypted_batch |
|
|
|
|
|
print("π Decrypting dataset with multiprocessing...") |
|
|
decrypted_dataset = encrypted_dataset.map( |
|
|
decrypt_batch, |
|
|
batched=True, |
|
|
batch_size=batch_size, |
|
|
num_proc=num_proc, |
|
|
desc="Decrypting samples", |
|
|
) |
|
|
|
|
|
print("β
Decryption completed!") |
|
|
print(f"π Decrypted {len(decrypted_dataset)} samples") |
|
|
print("π Text fields decrypted: question, answer, video_url, arxiv_id") |
|
|
print("πΌοΈ Images: kept as-is (not encrypted in current version)") |
|
|
print("π Metadata preserved: category, difficulty, subtask, etc.") |
|
|
|
|
|
if output_path: |
|
|
print(f"πΎ Saving decrypted dataset to: {output_path}") |
|
|
decrypted_dataset.save_to_disk(output_path) |
|
|
print("β
Saved successfully!") |
|
|
|
|
|
return decrypted_dataset |
|
|
|
|
|
|
|
|
def decrypt_mmsearch_plus( |
|
|
dataset_path: str, |
|
|
canary: str, |
|
|
output_path: str = None, |
|
|
from_hub: bool = False, |
|
|
num_proc: int = None, |
|
|
batch_size: int = 1000, |
|
|
): |
|
|
""" |
|
|
Load and decrypt the MMSearch-Plus dataset. |
|
|
|
|
|
Args: |
|
|
dataset_path: Path to local dataset or HuggingFace Hub repo ID |
|
|
canary: Canary string used for encryption |
|
|
output_path: Path to save decrypted dataset (optional) |
|
|
from_hub: Whether to load from HuggingFace Hub (default: auto-detect) |
|
|
num_proc: Number of processes for parallel decryption |
|
|
batch_size: Batch size for Dataset.map |
|
|
""" |
|
|
|
|
|
if not from_hub: |
|
|
from_hub = "/" in dataset_path and not Path(dataset_path).exists() |
|
|
|
|
|
|
|
|
if from_hub: |
|
|
print(f"π Loading encrypted dataset from HuggingFace Hub: {dataset_path}") |
|
|
encrypted_dataset = load_dataset(dataset_path, split='train') |
|
|
else: |
|
|
print(f"π Loading encrypted dataset from local path: {dataset_path}") |
|
|
if not Path(dataset_path).exists(): |
|
|
raise ValueError(f"Dataset path does not exist: {dataset_path}") |
|
|
encrypted_dataset = load_from_disk(dataset_path) |
|
|
|
|
|
return decrypt_dataset( |
|
|
encrypted_dataset, |
|
|
canary, |
|
|
output_path=output_path, |
|
|
num_proc=num_proc, |
|
|
batch_size=batch_size, |
|
|
) |
|
|
|
|
|
|
|
|
def main(): |
|
|
parser = argparse.ArgumentParser( |
|
|
description="Decrypt MMSearch-Plus dataset after loading from HuggingFace Hub or local path.", |
|
|
formatter_class=argparse.RawDescriptionHelpFormatter, |
|
|
epilog=""" |
|
|
Examples: |
|
|
# From HuggingFace Hub |
|
|
python decrypt_after_load.py --dataset-path username/mmsearch-plus-encrypted --canary "MMSearch-Plus" --output ./decrypted |
|
|
|
|
|
# From local directory |
|
|
python decrypt_after_load.py --dataset-path ./mmsearch_plus_encrypted --canary "MMSearch-Plus" --output ./decrypted |
|
|
|
|
|
# Using environment variable for canary |
|
|
export MMSEARCH_PLUS="your-canary-string" |
|
|
python decrypt_after_load.py --dataset-path username/mmsearch-plus-encrypted --output ./decrypted |
|
|
""" |
|
|
) |
|
|
parser.add_argument( |
|
|
"--dataset-path", |
|
|
required=True, |
|
|
help="Path to encrypted dataset (local directory or HuggingFace Hub repo ID)" |
|
|
) |
|
|
parser.add_argument( |
|
|
"--canary", |
|
|
help="Canary string used for encryption (or set MMSEARCH_PLUS environment variable)" |
|
|
) |
|
|
parser.add_argument( |
|
|
"--output", |
|
|
help="Path to save the decrypted dataset (optional, defaults to not saving)" |
|
|
) |
|
|
parser.add_argument( |
|
|
"--from-hub", |
|
|
action="store_true", |
|
|
help="Force loading from HuggingFace Hub (auto-detected by default)" |
|
|
) |
|
|
|
|
|
args = parser.parse_args() |
|
|
|
|
|
|
|
|
canary = args.canary or os.environ.get("MMSEARCH_PLUS") |
|
|
|
|
|
if not canary: |
|
|
raise ValueError( |
|
|
"Canary string is required for decryption. Either provide --canary argument " |
|
|
"or set the MMSEARCH_PLUS environment variable.\n" |
|
|
"Example: export MMSEARCH_PLUS='your-canary-string'" |
|
|
) |
|
|
|
|
|
|
|
|
if args.output: |
|
|
output_path = Path(args.output) |
|
|
if output_path.exists(): |
|
|
response = input(f"Output path {output_path} already exists. Overwrite? (y/N): ") |
|
|
if response.lower() != 'y': |
|
|
print("Aborted.") |
|
|
return |
|
|
|
|
|
|
|
|
decrypt_mmsearch_plus( |
|
|
dataset_path=args.dataset_path, |
|
|
canary=canary, |
|
|
output_path=args.output, |
|
|
from_hub=args.from_hub |
|
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
|
main() |
|
|
|