File size: 10,536 Bytes
49a3557
 
 
 
 
 
 
 
 
 
 
 
 
23208fa
49a3557
 
 
 
 
 
 
 
 
23208fa
49a3557
 
 
 
 
 
 
 
 
 
 
 
 
436c84d
 
49a3557
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
436c84d
 
 
 
 
 
 
49a3557
 
436c84d
49a3557
 
 
 
436c84d
 
49a3557
 
 
 
436c84d
 
 
 
 
49a3557
 
 
436c84d
49a3557
436c84d
49a3557
436c84d
49a3557
436c84d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49a3557
436c84d
 
49a3557
 
 
436c84d
 
 
49a3557
 
436c84d
49a3557
436c84d
 
 
49a3557
 
 
 
436c84d
49a3557
 
 
436c84d
 
 
 
 
 
 
 
 
49a3557
 
 
 
 
 
 
 
436c84d
 
49a3557
 
 
 
 
 
 
 
 
 
 
 
 
 
 
436c84d
 
 
 
 
 
 
 
49a3557
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
#!/usr/bin/env python3
"""
Decrypt MMSearch-Plus dataset after loading from HuggingFace Hub.

This module provides two main functions:
1. decrypt_dataset(): Decrypt an already-loaded Dataset object
2. decrypt_mmsearch_plus(): Load from path and decrypt in one step

Example usage with loaded dataset:
    from datasets import load_dataset
    from decrypt_after_load import decrypt_dataset
    
    # Load encrypted dataset
    encrypted_ds = load_dataset("Cie1/MMSearch-Plus", split='train')
    
    # Decrypt it
    decrypted_ds = decrypt_dataset(encrypted_ds, canary="MMSearch-Plus")
    
Example usage with path:
    from decrypt_after_load import decrypt_mmsearch_plus
    
    # Load and decrypt in one step
    decrypted_ds = decrypt_mmsearch_plus(
        dataset_path="Cie1/MMSearch-Plus",
        canary="MMSearch-Plus"
    )
"""

import base64
import hashlib
import argparse
import io
from pathlib import Path
from datasets import load_dataset, load_from_disk, Dataset
from PIL import Image
from typing import Dict, Any
import os
import multiprocessing


def derive_key(password: str, length: int) -> bytes:
    """Derive encryption key from password using SHA-256."""
    hasher = hashlib.sha256()
    hasher.update(password.encode())
    key = hasher.digest()
    return key * (length // len(key)) + key[: length % len(key)]

def decrypt_image(ciphertext_b64: str, password: str) -> Image.Image:
    """Decrypt base64-encoded encrypted image bytes back to PIL Image."""
    if not ciphertext_b64:
        return None

    try:
        encrypted = base64.b64decode(ciphertext_b64)
        key = derive_key(password, len(encrypted))
        decrypted = bytes([a ^ b for a, b in zip(encrypted, key)])

        # Convert bytes back to PIL Image
        img_buffer = io.BytesIO(decrypted)
        image = Image.open(img_buffer)
        return image
    except Exception as e:
        print(f"[Warning] Image decryption failed: {e}")
        return None

def decrypt_text(ciphertext_b64: str, password: str) -> str:
    """Decrypt base64-encoded ciphertext using XOR cipher with derived key."""
    if not ciphertext_b64:
        return ciphertext_b64

    try:
        encrypted = base64.b64decode(ciphertext_b64)
        key = derive_key(password, len(encrypted))
        decrypted = bytes([a ^ b for a, b in zip(encrypted, key)])
        return decrypted.decode('utf-8')
    except Exception as e:
        print(f"[Warning] Decryption failed: {e}")
        return ciphertext_b64  # Return original if decryption fails

def decrypt_sample(sample: Dict[str, Any], canary: str) -> Dict[str, Any]:
    """Decrypt text and image fields in a single sample using the provided canary password."""
    decrypted_sample = sample.copy()

    # Decrypt text fields (must match what was encrypted)
    text_fields = ['question', 'video_url', 'arxiv_id']

    for field in text_fields:
        if field in sample and sample[field]:
            decrypted_sample[field] = decrypt_text(sample[field], canary)

    # Handle answer field (list of strings)
    if 'answer' in sample and sample['answer']:
        decrypted_answers = []
        for answer in sample['answer']:
            if answer:
                decrypted_answers.append(decrypt_text(answer, canary))
            else:
                decrypted_answers.append(answer)
        decrypted_sample['answer'] = decrypted_answers

    # Images are NOT encrypted in the current version, so no image decryption needed
    # If your dataset has encrypted images (base64 strings), uncomment below:
    # image_fields = ['img_1', 'img_2', 'img_3', 'img_4', 'img_5']
    # for field in image_fields:
    #     if field in sample and sample[field] is not None and isinstance(sample[field], str):
    #         decrypted_sample[field] = decrypt_image(sample[field], canary)

    return decrypted_sample

def decrypt_dataset(
    encrypted_dataset: Dataset,
    canary: str,
    output_path: str = None,
    num_proc: int = None,
    batch_size: int = 1000,
) -> Dataset:
    """
    Decrypt an already-loaded dataset object.

    Args:
        encrypted_dataset: Already loaded Dataset object to decrypt
        canary: Canary string used for encryption
        output_path: Path to save decrypted dataset (optional)
        num_proc: Number of processes for parallel decryption (defaults to CPU count)
        batch_size: Batch size for Dataset.map
    """
    if not isinstance(encrypted_dataset, Dataset):
        raise TypeError(f"Expected Dataset object, got {type(encrypted_dataset)}")
    
    if num_proc is None:
        # Leave 1 core free so your machine stays responsive
        cpu_count = multiprocessing.cpu_count()
        num_proc = max(1, cpu_count - 1)

    print(f"πŸ“Š Dataset contains {len(encrypted_dataset)} samples")
    print(f"πŸ”§ Features: {list(encrypted_dataset.features.keys())}")
    print(f"πŸ”‘ Using canary string: {canary}")
    print(f"🧡 Using {num_proc} processes, batch_size={batch_size}")

    # Vectorized batch decryption (column-wise)
    def decrypt_batch(batch):
        decrypted_batch = dict(batch)  # shallow copy
        
        text_fields = ['question', 'video_url', 'arxiv_id']
        for field in text_fields:
            if field in batch:
                decrypted_batch[field] = [
                    decrypt_text(x, canary) if x else x
                    for x in batch[field]
                ]

        # answer: list[list[str]]
        if 'answer' in batch:
            decrypted_answers = []
            for answers in batch['answer']:
                if answers:
                    decrypted_answers.append([
                        decrypt_text(a, canary) if a else a
                        for a in answers
                    ])
                else:
                    decrypted_answers.append(answers)
            decrypted_batch['answer'] = decrypted_answers

        # Images are kept as-is (not encrypted)
        return decrypted_batch

    print("πŸ”„ Decrypting dataset with multiprocessing...")
    decrypted_dataset = encrypted_dataset.map(
        decrypt_batch,
        batched=True,
        batch_size=batch_size,
        num_proc=num_proc,
        desc="Decrypting samples",
    )

    print("βœ… Decryption completed!")
    print(f"πŸ“ Decrypted {len(decrypted_dataset)} samples")
    print("πŸ”“ Text fields decrypted: question, answer, video_url, arxiv_id")
    print("πŸ–ΌοΈ Images: kept as-is (not encrypted in current version)")
    print("πŸ“‹ Metadata preserved: category, difficulty, subtask, etc.")

    if output_path:
        print(f"πŸ’Ύ Saving decrypted dataset to: {output_path}")
        decrypted_dataset.save_to_disk(output_path)
        print("βœ… Saved successfully!")
    
    return decrypted_dataset


def decrypt_mmsearch_plus(
    dataset_path: str,
    canary: str,
    output_path: str = None,
    from_hub: bool = False,
    num_proc: int = None,
    batch_size: int = 1000,
):
    """
    Load and decrypt the MMSearch-Plus dataset.
    
    Args:
        dataset_path: Path to local dataset or HuggingFace Hub repo ID
        canary: Canary string used for encryption
        output_path: Path to save decrypted dataset (optional)
        from_hub: Whether to load from HuggingFace Hub (default: auto-detect)
        num_proc: Number of processes for parallel decryption
        batch_size: Batch size for Dataset.map
    """
    # Auto-detect if loading from hub (contains "/" and doesn't exist locally)
    if not from_hub:
        from_hub = "/" in dataset_path and not Path(dataset_path).exists()
    
    # Load the encrypted dataset
    if from_hub:
        print(f"πŸ”“ Loading encrypted dataset from HuggingFace Hub: {dataset_path}")
        encrypted_dataset = load_dataset(dataset_path, split='train')
    else:
        print(f"πŸ”“ Loading encrypted dataset from local path: {dataset_path}")
        if not Path(dataset_path).exists():
            raise ValueError(f"Dataset path does not exist: {dataset_path}")
        encrypted_dataset = load_from_disk(dataset_path)

    return decrypt_dataset(
        encrypted_dataset,
        canary,
        output_path=output_path,
        num_proc=num_proc,
        batch_size=batch_size,
    )


def main():
    parser = argparse.ArgumentParser(
        description="Decrypt MMSearch-Plus dataset after loading from HuggingFace Hub or local path.",
        formatter_class=argparse.RawDescriptionHelpFormatter,
        epilog="""
Examples:
  # From HuggingFace Hub
  python decrypt_after_load.py --dataset-path username/mmsearch-plus-encrypted --canary "MMSearch-Plus" --output ./decrypted
  
  # From local directory
  python decrypt_after_load.py --dataset-path ./mmsearch_plus_encrypted --canary "MMSearch-Plus" --output ./decrypted
  
  # Using environment variable for canary
  export MMSEARCH_PLUS="your-canary-string"
  python decrypt_after_load.py --dataset-path username/mmsearch-plus-encrypted --output ./decrypted
        """
    )
    parser.add_argument(
        "--dataset-path",
        required=True,
        help="Path to encrypted dataset (local directory or HuggingFace Hub repo ID)"
    )
    parser.add_argument(
        "--canary",
        help="Canary string used for encryption (or set MMSEARCH_PLUS environment variable)"
    )
    parser.add_argument(
        "--output",
        help="Path to save the decrypted dataset (optional, defaults to not saving)"
    )
    parser.add_argument(
        "--from-hub",
        action="store_true",
        help="Force loading from HuggingFace Hub (auto-detected by default)"
    )
    
    args = parser.parse_args()

    # Get canary from args or environment variable
    canary = args.canary or os.environ.get("MMSEARCH_PLUS")
    
    if not canary:
        raise ValueError(
            "Canary string is required for decryption. Either provide --canary argument "
            "or set the MMSEARCH_PLUS environment variable.\n"
            "Example: export MMSEARCH_PLUS='your-canary-string'"
        )

    # Check if output path exists
    if args.output:
        output_path = Path(args.output)
        if output_path.exists():
            response = input(f"Output path {output_path} already exists. Overwrite? (y/N): ")
            if response.lower() != 'y':
                print("Aborted.")
                return

    # Decrypt dataset
    decrypt_mmsearch_plus(
        dataset_path=args.dataset_path,
        canary=canary,
        output_path=args.output,
        from_hub=args.from_hub
    )

if __name__ == "__main__":
    main()