#!/usr/bin/env python3 """ Decrypt MMSearch-Plus dataset after loading from HuggingFace Hub. This module provides two main functions: 1. decrypt_dataset(): Decrypt an already-loaded Dataset object 2. decrypt_mmsearch_plus(): Load from path and decrypt in one step Example usage with loaded dataset: from datasets import load_dataset from decrypt_after_load import decrypt_dataset # Load encrypted dataset encrypted_ds = load_dataset("Cie1/MMSearch-Plus", split='train') # Decrypt it decrypted_ds = decrypt_dataset(encrypted_ds, canary="MMSearch-Plus") Example usage with path: from decrypt_after_load import decrypt_mmsearch_plus # Load and decrypt in one step decrypted_ds = decrypt_mmsearch_plus( dataset_path="Cie1/MMSearch-Plus", canary="MMSearch-Plus" ) """ import base64 import hashlib import argparse import io from pathlib import Path from datasets import load_dataset, load_from_disk, Dataset from PIL import Image from typing import Dict, Any import os import multiprocessing def derive_key(password: str, length: int) -> bytes: """Derive encryption key from password using SHA-256.""" hasher = hashlib.sha256() hasher.update(password.encode()) key = hasher.digest() return key * (length // len(key)) + key[: length % len(key)] def decrypt_image(ciphertext_b64: str, password: str) -> Image.Image: """Decrypt base64-encoded encrypted image bytes back to PIL Image.""" if not ciphertext_b64: return None try: encrypted = base64.b64decode(ciphertext_b64) key = derive_key(password, len(encrypted)) decrypted = bytes([a ^ b for a, b in zip(encrypted, key)]) # Convert bytes back to PIL Image img_buffer = io.BytesIO(decrypted) image = Image.open(img_buffer) return image except Exception as e: print(f"[Warning] Image decryption failed: {e}") return None def decrypt_text(ciphertext_b64: str, password: str) -> str: """Decrypt base64-encoded ciphertext using XOR cipher with derived key.""" if not ciphertext_b64: return ciphertext_b64 try: encrypted = base64.b64decode(ciphertext_b64) key = derive_key(password, len(encrypted)) decrypted = bytes([a ^ b for a, b in zip(encrypted, key)]) return decrypted.decode('utf-8') except Exception as e: print(f"[Warning] Decryption failed: {e}") return ciphertext_b64 # Return original if decryption fails def decrypt_sample(sample: Dict[str, Any], canary: str) -> Dict[str, Any]: """Decrypt text and image fields in a single sample using the provided canary password.""" decrypted_sample = sample.copy() # Decrypt text fields (must match what was encrypted) text_fields = ['question', 'video_url', 'arxiv_id'] for field in text_fields: if field in sample and sample[field]: decrypted_sample[field] = decrypt_text(sample[field], canary) # Handle answer field (list of strings) if 'answer' in sample and sample['answer']: decrypted_answers = [] for answer in sample['answer']: if answer: decrypted_answers.append(decrypt_text(answer, canary)) else: decrypted_answers.append(answer) decrypted_sample['answer'] = decrypted_answers # Images are NOT encrypted in the current version, so no image decryption needed # If your dataset has encrypted images (base64 strings), uncomment below: # image_fields = ['img_1', 'img_2', 'img_3', 'img_4', 'img_5'] # for field in image_fields: # if field in sample and sample[field] is not None and isinstance(sample[field], str): # decrypted_sample[field] = decrypt_image(sample[field], canary) return decrypted_sample def decrypt_dataset( encrypted_dataset: Dataset, canary: str, output_path: str = None, num_proc: int = None, batch_size: int = 1000, ) -> Dataset: """ Decrypt an already-loaded dataset object. Args: encrypted_dataset: Already loaded Dataset object to decrypt canary: Canary string used for encryption output_path: Path to save decrypted dataset (optional) num_proc: Number of processes for parallel decryption (defaults to CPU count) batch_size: Batch size for Dataset.map """ if not isinstance(encrypted_dataset, Dataset): raise TypeError(f"Expected Dataset object, got {type(encrypted_dataset)}") if num_proc is None: # Leave 1 core free so your machine stays responsive cpu_count = multiprocessing.cpu_count() num_proc = max(1, cpu_count - 1) print(f"๐Ÿ“Š Dataset contains {len(encrypted_dataset)} samples") print(f"๐Ÿ”ง Features: {list(encrypted_dataset.features.keys())}") print(f"๐Ÿ”‘ Using canary string: {canary}") print(f"๐Ÿงต Using {num_proc} processes, batch_size={batch_size}") # Vectorized batch decryption (column-wise) def decrypt_batch(batch): decrypted_batch = dict(batch) # shallow copy text_fields = ['question', 'video_url', 'arxiv_id'] for field in text_fields: if field in batch: decrypted_batch[field] = [ decrypt_text(x, canary) if x else x for x in batch[field] ] # answer: list[list[str]] if 'answer' in batch: decrypted_answers = [] for answers in batch['answer']: if answers: decrypted_answers.append([ decrypt_text(a, canary) if a else a for a in answers ]) else: decrypted_answers.append(answers) decrypted_batch['answer'] = decrypted_answers # Images are kept as-is (not encrypted) return decrypted_batch print("๐Ÿ”„ Decrypting dataset with multiprocessing...") decrypted_dataset = encrypted_dataset.map( decrypt_batch, batched=True, batch_size=batch_size, num_proc=num_proc, desc="Decrypting samples", ) print("โœ… Decryption completed!") print(f"๐Ÿ“ Decrypted {len(decrypted_dataset)} samples") print("๐Ÿ”“ Text fields decrypted: question, answer, video_url, arxiv_id") print("๐Ÿ–ผ๏ธ Images: kept as-is (not encrypted in current version)") print("๐Ÿ“‹ Metadata preserved: category, difficulty, subtask, etc.") if output_path: print(f"๐Ÿ’พ Saving decrypted dataset to: {output_path}") decrypted_dataset.save_to_disk(output_path) print("โœ… Saved successfully!") return decrypted_dataset def decrypt_mmsearch_plus( dataset_path: str, canary: str, output_path: str = None, from_hub: bool = False, num_proc: int = None, batch_size: int = 1000, ): """ Load and decrypt the MMSearch-Plus dataset. Args: dataset_path: Path to local dataset or HuggingFace Hub repo ID canary: Canary string used for encryption output_path: Path to save decrypted dataset (optional) from_hub: Whether to load from HuggingFace Hub (default: auto-detect) num_proc: Number of processes for parallel decryption batch_size: Batch size for Dataset.map """ # Auto-detect if loading from hub (contains "/" and doesn't exist locally) if not from_hub: from_hub = "/" in dataset_path and not Path(dataset_path).exists() # Load the encrypted dataset if from_hub: print(f"๐Ÿ”“ Loading encrypted dataset from HuggingFace Hub: {dataset_path}") encrypted_dataset = load_dataset(dataset_path, split='train') else: print(f"๐Ÿ”“ Loading encrypted dataset from local path: {dataset_path}") if not Path(dataset_path).exists(): raise ValueError(f"Dataset path does not exist: {dataset_path}") encrypted_dataset = load_from_disk(dataset_path) return decrypt_dataset( encrypted_dataset, canary, output_path=output_path, num_proc=num_proc, batch_size=batch_size, ) def main(): parser = argparse.ArgumentParser( description="Decrypt MMSearch-Plus dataset after loading from HuggingFace Hub or local path.", formatter_class=argparse.RawDescriptionHelpFormatter, epilog=""" Examples: # From HuggingFace Hub python decrypt_after_load.py --dataset-path username/mmsearch-plus-encrypted --canary "MMSearch-Plus" --output ./decrypted # From local directory python decrypt_after_load.py --dataset-path ./mmsearch_plus_encrypted --canary "MMSearch-Plus" --output ./decrypted # Using environment variable for canary export MMSEARCH_PLUS="your-canary-string" python decrypt_after_load.py --dataset-path username/mmsearch-plus-encrypted --output ./decrypted """ ) parser.add_argument( "--dataset-path", required=True, help="Path to encrypted dataset (local directory or HuggingFace Hub repo ID)" ) parser.add_argument( "--canary", help="Canary string used for encryption (or set MMSEARCH_PLUS environment variable)" ) parser.add_argument( "--output", help="Path to save the decrypted dataset (optional, defaults to not saving)" ) parser.add_argument( "--from-hub", action="store_true", help="Force loading from HuggingFace Hub (auto-detected by default)" ) args = parser.parse_args() # Get canary from args or environment variable canary = args.canary or os.environ.get("MMSEARCH_PLUS") if not canary: raise ValueError( "Canary string is required for decryption. Either provide --canary argument " "or set the MMSEARCH_PLUS environment variable.\n" "Example: export MMSEARCH_PLUS='your-canary-string'" ) # Check if output path exists if args.output: output_path = Path(args.output) if output_path.exists(): response = input(f"Output path {output_path} already exists. Overwrite? (y/N): ") if response.lower() != 'y': print("Aborted.") return # Decrypt dataset decrypt_mmsearch_plus( dataset_path=args.dataset_path, canary=canary, output_path=args.output, from_hub=args.from_hub ) if __name__ == "__main__": main()