SentenceTransformer based on google/embeddinggemma-300m
This is a sentence-transformers model finetuned from google/embeddinggemma-300m. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: google/embeddinggemma-300m
- Maximum Sequence Length: 2048 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 2048, 'do_lower_case': False, 'architecture': 'Gemma3TextModel'})
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Dense({'in_features': 768, 'out_features': 3072, 'bias': False, 'activation_function': 'torch.nn.modules.linear.Identity'})
(3): Dense({'in_features': 3072, 'out_features': 768, 'bias': False, 'activation_function': 'torch.nn.modules.linear.Identity'})
(4): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("yasserrmd/emirati-arabic-gemma-300m-emb")
# Run inference
queries = [
"\u0628\u0643\u0645 \u062a\u0646\u0638\u064a\u0641 \u0627\u0644\u0623\u0630\u0646\u061f",
]
documents = [
'٥٠ درهم.',
'نزلته أمس بالليل.',
'الحمدلله كلهم زينين، يسلمون عليك.',
]
query_embeddings = model.encode_query(queries)
document_embeddings = model.encode_document(documents)
print(query_embeddings.shape, document_embeddings.shape)
# [1, 768] [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(query_embeddings, document_embeddings)
print(similarities)
# tensor([[0.1448, 0.2254, 0.3522]])
Training Details
Training Dataset
Unnamed Dataset
- Size: 12,324 training samples
- Columns:
sentence_0andsentence_1 - Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 type string string details - min: 4 tokens
- mean: 11.73 tokens
- max: 64 tokens
- min: 4 tokens
- mean: 14.47 tokens
- max: 68 tokens
- Samples:
sentence_0 sentence_1 كم عمرك؟٢٧ سنة.ما تقدر تنزل أكثر؟لا والله، ما بقى ربح.الجولة البحرية فيها وجبة؟نعم، عشاء مفتوح. - Loss:
MultipleNegativesRankingLosswith these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim", "gather_across_devices": false }
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size: 6per_device_eval_batch_size: 6num_train_epochs: 4multi_dataset_batch_sampler: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: noprediction_loss_only: Trueper_device_train_batch_size: 6per_device_eval_batch_size: 6per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1num_train_epochs: 4max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.0warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}parallelism_config: Nonedeepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torch_fusedoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsehub_revision: Nonegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseliger_kernel_config: Noneeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: round_robinrouter_mapping: {}learning_rate_mapping: {}
Training Logs
| Epoch | Step | Training Loss |
|---|---|---|
| 0.2434 | 500 | 1.0578 |
| 0.4869 | 1000 | 0.7525 |
| 0.7303 | 1500 | 0.5706 |
| 0.9737 | 2000 | 0.4128 |
| 0.2434 | 2500 | 0.4749 |
| 0.4869 | 3000 | 0.5956 |
| 0.7303 | 3500 | 0.5322 |
| 0.9737 | 4000 | 0.476 |
| 1.2171 | 4500 | 0.3686 |
| 1.4606 | 5000 | 0.3213 |
| 1.7040 | 5500 | 0.3192 |
| 1.9474 | 6000 | 0.2964 |
| 2.1908 | 6500 | 0.2151 |
| 2.4343 | 7000 | 0.1891 |
| 2.6777 | 7500 | 0.1668 |
| 2.9211 | 8000 | 0.1669 |
| 3.1646 | 8500 | 0.1 |
| 3.4080 | 9000 | 0.0948 |
| 3.6514 | 9500 | 0.1017 |
| 3.8948 | 10000 | 0.076 |
Got it ✅ Since you tested more than 200 pairs, you can make your README section stronger by showing scale + coverage. Here’s an upgraded version you can paste directly:
Evaluation & Benchmark
The model was evaluated on 200+ Emirati Arabic conversational sentence pairs covering greetings, family, culture, food, weather, technology, education, and more.
Strengths
- Greetings & Social Talk → High similarity (0.78–0.89) for common greetings and check-ins.
- Family & Daily Life → Strong clustering (0.7–0.88) for expressions about relatives and routine activities.
- Food & Culture → Accurate embeddings for traditional dishes and cultural references (0.8–0.95).
- Weather & Environment → Excellent handling of synonyms like “الجو حار” ↔ “الطقس حر” (0.93+).
- Sports Commentary → Captures natural paraphrases (“اللاعب سجل هدف” ↔ “اللاعب جاب جول” → 0.88).
- Tech & Code-switching → Handles Arabic-English mix well (“Laptop ما يشتغل” ↔ “اللابتوب خربان”).
Weaknesses
- Negation & Polarity → Sometimes overestimates similarity between opposites (“بعيد ↔ قريب”).
- Religious / Abstract Phrases → Inconsistent for Eid, Ramadan, and Quran-related expressions.
- Subtle Emotions → Good with strong polarity (“غضبان ↔ معصب”), weaker on softer ones (“فرحان ↔ سعيد”).
- Health/Medical Contexts → Direct matches are fine (“عملية ↔ جراحة”), indirect links less consistent.
Takeaway
Overall, the model shows robust performance on everyday Emirati Arabic dialogue with high reliability on paraphrases and cultural expressions, while edge cases like negation, abstract phrasing, and subtle emotional tone need refinement.
Framework Versions
- Python: 3.12.11
- Sentence Transformers: 5.1.0
- Transformers: 4.56.1
- PyTorch: 2.8.0+cu128
- Accelerate: 1.10.1
- Datasets: 4.0.0
- Tokenizers: 0.22.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 21
Model tree for yasserrmd/emirati-arabic-gemma-300m-emb
Base model
google/embeddinggemma-300m