EduardoPach
commited on
Commit
·
89da9e7
1
Parent(s):
239a99b
Suggested modifications
Browse files
app.py
CHANGED
|
@@ -80,6 +80,8 @@ with gr.Blocks(title=title) as demo:
|
|
| 80 |
on a synthetic dataset. The transformations are then used to train a linear model on the \
|
| 81 |
transformed data. The plot shows the ROC curve of the different models trained on the \
|
| 82 |
transformed data. The plot is interactive and you can zoom in and out.
|
|
|
|
|
|
|
| 83 |
"""
|
| 84 |
)
|
| 85 |
|
|
@@ -88,10 +90,10 @@ with gr.Blocks(title=title) as demo:
|
|
| 88 |
n_samples = gr.inputs.Slider(50_000, 100_000, 1000, label="Number of Samples", default=80_000)
|
| 89 |
n_estimators = gr.inputs.Slider(10, 100, 10, label="Number of Estimators", default=10)
|
| 90 |
max_depth = gr.inputs.Slider(1, 10, 1, label="Max Depth", default=3)
|
|
|
|
| 91 |
plot = gr.Plot(label="ROC Curve")
|
| 92 |
|
| 93 |
-
|
| 94 |
-
Reduction.click(fn=app_fn, inputs=[n_samples, n_estimators, max_depth], outputs=[plot])
|
| 95 |
demo.load(fn=app_fn, inputs=[n_samples, n_estimators, max_depth], outputs=[plot])
|
| 96 |
|
| 97 |
demo.launch()
|
|
|
|
| 80 |
on a synthetic dataset. The transformations are then used to train a linear model on the \
|
| 81 |
transformed data. The plot shows the ROC curve of the different models trained on the \
|
| 82 |
transformed data. The plot is interactive and you can zoom in and out.
|
| 83 |
+
|
| 84 |
+
[Original Example](https://scikit-learn.org/stable/auto_examples/ensemble/plot_feature_transformation.html#sphx-glr-auto-examples-ensemble-plot-feature-transformation-py)
|
| 85 |
"""
|
| 86 |
)
|
| 87 |
|
|
|
|
| 90 |
n_samples = gr.inputs.Slider(50_000, 100_000, 1000, label="Number of Samples", default=80_000)
|
| 91 |
n_estimators = gr.inputs.Slider(10, 100, 10, label="Number of Estimators", default=10)
|
| 92 |
max_depth = gr.inputs.Slider(1, 10, 1, label="Max Depth", default=3)
|
| 93 |
+
btn = gr.Button("Run")
|
| 94 |
plot = gr.Plot(label="ROC Curve")
|
| 95 |
|
| 96 |
+
btn.click(fn=app_fn, inputs=[n_samples, n_estimators, max_depth], outputs=[plot])
|
|
|
|
| 97 |
demo.load(fn=app_fn, inputs=[n_samples, n_estimators, max_depth], outputs=[plot])
|
| 98 |
|
| 99 |
demo.launch()
|