EduardoPach
commited on
Commit
·
239a99b
1
Parent(s):
e757838
Gradio app to run example
Browse files
app.py
ADDED
|
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from sklearn.pipeline import make_pipeline
|
| 3 |
+
from sklearn.metrics import roc_curve, auc
|
| 4 |
+
from sklearn.datasets import make_classification
|
| 5 |
+
from sklearn.linear_model import LogisticRegression
|
| 6 |
+
from sklearn.model_selection import train_test_split
|
| 7 |
+
from sklearn.preprocessing import FunctionTransformer, OneHotEncoder
|
| 8 |
+
from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier, RandomTreesEmbedding
|
| 9 |
+
|
| 10 |
+
import utils
|
| 11 |
+
|
| 12 |
+
def app_fn(n_samples: int, n_estimators: int, max_depth: int):
|
| 13 |
+
# Create Data
|
| 14 |
+
(X_train_ensemble, y_train_ensemble), \
|
| 15 |
+
(X_train_linear, y_train_linear), \
|
| 16 |
+
(X_test, y_test) = utils.create_and_split_dataset(n_samples)
|
| 17 |
+
|
| 18 |
+
# Creating and fitting Random Forest
|
| 19 |
+
random_forest = RandomForestClassifier(
|
| 20 |
+
n_estimators=n_estimators, max_depth=max_depth, random_state=10
|
| 21 |
+
)
|
| 22 |
+
random_forest.fit(X_train_ensemble, y_train_ensemble)
|
| 23 |
+
|
| 24 |
+
# Creating and fitting Gradient Boosting
|
| 25 |
+
gradient_boosting = GradientBoostingClassifier(
|
| 26 |
+
n_estimators=n_estimators, max_depth=max_depth, random_state=10
|
| 27 |
+
)
|
| 28 |
+
_ = gradient_boosting.fit(X_train_ensemble, y_train_ensemble)
|
| 29 |
+
|
| 30 |
+
# Creating and fitting Pipeline of Random Tree Embedding w/ Logistic Regression
|
| 31 |
+
random_tree_embedding = RandomTreesEmbedding(
|
| 32 |
+
n_estimators=n_estimators, max_depth=max_depth, random_state=0
|
| 33 |
+
)
|
| 34 |
+
rt_model = make_pipeline(random_tree_embedding, LogisticRegression(max_iter=1000))
|
| 35 |
+
rt_model.fit(X_train_linear, y_train_linear)
|
| 36 |
+
|
| 37 |
+
# Creating and fitting Pipeline of Random Forest Embedding w/ Logistic Regression
|
| 38 |
+
rf_leaves_yielder = FunctionTransformer(utils.rf_apply, kw_args={"model": random_forest})
|
| 39 |
+
rf_model = make_pipeline(
|
| 40 |
+
rf_leaves_yielder,
|
| 41 |
+
OneHotEncoder(handle_unknown="ignore"),
|
| 42 |
+
LogisticRegression(max_iter=1000),
|
| 43 |
+
)
|
| 44 |
+
rf_model.fit(X_train_linear, y_train_linear)
|
| 45 |
+
|
| 46 |
+
# Creating and fitting Pipeline of Gradient Boosting Embedding w/ Logistic Regression
|
| 47 |
+
gbdt_leaves_yielder = FunctionTransformer(
|
| 48 |
+
utils.gbdt_apply, kw_args={"model": gradient_boosting}
|
| 49 |
+
)
|
| 50 |
+
gbdt_model = make_pipeline(
|
| 51 |
+
gbdt_leaves_yielder,
|
| 52 |
+
OneHotEncoder(handle_unknown="ignore"),
|
| 53 |
+
LogisticRegression(max_iter=1000),
|
| 54 |
+
)
|
| 55 |
+
gbdt_model.fit(X_train_linear, y_train_linear)
|
| 56 |
+
|
| 57 |
+
# Plotting ROC Curve
|
| 58 |
+
models = [
|
| 59 |
+
("RT embedding -> LR", rt_model),
|
| 60 |
+
("RF", random_forest),
|
| 61 |
+
("RF embedding -> LR", rf_model),
|
| 62 |
+
("GBDT", gradient_boosting),
|
| 63 |
+
("GBDT embedding -> LR", gbdt_model),
|
| 64 |
+
]
|
| 65 |
+
|
| 66 |
+
fig = utils.plot_roc(
|
| 67 |
+
X_test,
|
| 68 |
+
y_test,
|
| 69 |
+
models
|
| 70 |
+
)
|
| 71 |
+
|
| 72 |
+
return fig
|
| 73 |
+
|
| 74 |
+
title="Feature Transformations with Ensembles of Trees 🌳"
|
| 75 |
+
with gr.Blocks(title=title) as demo:
|
| 76 |
+
gr.Markdown(f"# {title}")
|
| 77 |
+
gr.Markdown(
|
| 78 |
+
"""
|
| 79 |
+
## This example shows how one can apply features transformations using ensembles of trees \
|
| 80 |
+
on a synthetic dataset. The transformations are then used to train a linear model on the \
|
| 81 |
+
transformed data. The plot shows the ROC curve of the different models trained on the \
|
| 82 |
+
transformed data. The plot is interactive and you can zoom in and out.
|
| 83 |
+
"""
|
| 84 |
+
)
|
| 85 |
+
|
| 86 |
+
with gr.Row():
|
| 87 |
+
with gr.Column():
|
| 88 |
+
n_samples = gr.inputs.Slider(50_000, 100_000, 1000, label="Number of Samples", default=80_000)
|
| 89 |
+
n_estimators = gr.inputs.Slider(10, 100, 10, label="Number of Estimators", default=10)
|
| 90 |
+
max_depth = gr.inputs.Slider(1, 10, 1, label="Max Depth", default=3)
|
| 91 |
+
plot = gr.Plot(label="ROC Curve")
|
| 92 |
+
|
| 93 |
+
Reduction = gr.Button("Run")
|
| 94 |
+
Reduction.click(fn=app_fn, inputs=[n_samples, n_estimators, max_depth], outputs=[plot])
|
| 95 |
+
demo.load(fn=app_fn, inputs=[n_samples, n_estimators, max_depth], outputs=[plot])
|
| 96 |
+
|
| 97 |
+
demo.launch()
|