File size: 7,093 Bytes
805dc88
 
 
 
 
b42dd5a
805dc88
 
 
 
 
 
 
 
 
 
 
 
e30e3e0
805dc88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b42dd5a
805dc88
 
 
 
 
 
 
a4ef5c2
 
 
 
 
 
 
9d678ac
a4ef5c2
805dc88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae20bb4
805dc88
 
 
 
 
 
df474c5
a4ef5c2
805dc88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b42dd5a
 
805dc88
7675377
 
 
 
 
 
 
805dc88
 
 
7675377
 
 
82dcf49
7675377
805dc88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0aa0f80
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import gradio as gr
import numpy as np
import random
import spaces
import torch
from diffusers import ZImagePipeline

import os
import requests
import tempfile
import shutil
from urllib.parse import urlparse

dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"


# Load the model pipeline
pipe = ZImagePipeline.from_pretrained("Tongyi-MAI/Z-Image-Turbo", torch_dtype=dtype).to(device)

torch.cuda.empty_cache()

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048

# pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)

# flymy-ai/qwen-image-realism-lora

def load_lora_auto(pipe, lora_input):
    lora_input = lora_input.strip()
    if not lora_input:
        return

    # If it's just an ID like "author/model"
    if "/" in lora_input and not lora_input.startswith("http"):
        pipe.load_lora_weights(lora_input)
        return

    if lora_input.startswith("http"):
        url = lora_input

        # Repo page (no blob/resolve)
        if "huggingface.co" in url and "/blob/" not in url and "/resolve/" not in url:
            repo_id = urlparse(url).path.strip("/")
            pipe.load_lora_weights(repo_id)
            return

        # Blob link → convert to resolve link
        if "/blob/" in url:
            url = url.replace("/blob/", "/resolve/")

        # Download direct file
        tmp_dir = tempfile.mkdtemp()
        local_path = os.path.join(tmp_dir, os.path.basename(urlparse(url).path))

        try:
            print(f"Downloading LoRA from {url}...")
            resp = requests.get(url, stream=True)
            resp.raise_for_status()
            with open(local_path, "wb") as f:
                for chunk in resp.iter_content(chunk_size=8192):
                    f.write(chunk)
            print(f"Saved LoRA to {local_path}")
            pipe.load_lora_weights(local_path)
        finally:
            shutil.rmtree(tmp_dir, ignore_errors=True)

@spaces.GPU()
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=4, num_inference_steps=28, lora_id=None, lora_scale=0.95, progress=gr.Progress(track_tqdm=True)):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    generator = torch.Generator().manual_seed(seed)

    
    if lora_id and lora_id.strip() != "":
        pipe.unload_lora_weights()
        load_lora_auto(pipe, lora_id)
    
    try:
        image = pipe(
        prompt=prompt,
        negative_prompt="",
        width=width,
        height=height,
        num_inference_steps=num_inference_steps,
        generator=generator,
        guidance_scale=guidance_scale  # Use a fixed default for distilled guidance
    ).images[0]
        print("Image Generation Completed for: ", prompt, lora_id)
        return image, seed
    finally:
        # Unload LoRA weights if they were loaded
        if lora_id:
            pipe.unload_lora_weights()


lora_examples = [
    ["ostris/z_image_turbo_childrens_drawings"],
    ["tarn59/pixel_art_style_lora_z_image_turbo"],
    ["renderartist/Saturday-Morning-Z-Image-Turbo"],
    ["renderartist/Coloring-Book-Z-Image-Turbo-LoRA"],
    ["https://huggingface.co/tarn59/80s_air_brush_style_z_image_turbo/resolve/main/80s_air_brush_style_v2_z_image_turbo.safetensors"]
]
    
examples = [
    "a tiny astronaut hatching from an egg on the moon",
    "a cat holding a sign that says hello world",
    "an anime illustration of a wiener schnitzel",
]
    
css = """
#col-container {
   margin: 0 auto;
   max-width: 960px;
}
.generate-btn {
   background: linear-gradient(90deg, #4B79A1 0%, #283E51 100%) !important;
   border: none !important;
   color: white !important;
}
.generate-btn:hover {
   transform: translateY(-2px);
   box-shadow: 0 5px 15px rgba(0,0,0,0.2);
}
"""

with gr.Blocks(css=css) as app:
    gr.HTML("<center><h1>Z-Image with LoRA support</h1></center>")
    with gr.Column(elem_id="col-container"):
        with gr.Row():
            with gr.Column():
                with gr.Row():
                    text_prompt = gr.Textbox(label="Prompt", placeholder="Enter a prompt here", lines=3, elem_id="prompt-text-input")
                with gr.Row():
                    custom_lora = gr.Textbox(label="Custom LoRA (optional)", info="URL or the path to the LoRA weights", placeholder="ostris/z_image_turbo_childrens_drawings")

                with gr.Row():
                    with gr.Accordion("Advanced Settings", open=False):
                        lora_scale = gr.Slider(
                            label="LoRA Scale",
                            minimum=0,
                            maximum=2,
                            step=0.01,
                            value=1,
                        )
                        with gr.Row():
                            width = gr.Slider(label="Width", value=1024, minimum=64, maximum=2048, step=16)
                            height = gr.Slider(label="Height", value=1024, minimum=64, maximum=2048, step=16)
                        seed = gr.Slider(label="Seed", value=-1, minimum=-1, maximum=4294967296, step=1)
                        randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
                        with gr.Row():
                            steps = gr.Slider(label="Inference steps steps", value=9, minimum=1, maximum=20, step=1)
                            cfg = gr.Slider(label="Guidance Scale", value=0, minimum=0, maximum=20, step=0.5)
                        # method = gr.Radio(label="Sampling method", value="DPM++ 2M Karras", choices=["DPM++ 2M Karras", "DPM++ SDE Karras", "Euler", "Euler a", "Heun", "DDIM"])
                

                with gr.Row():
                    # text_button = gr.Button("Run", variant='primary', elem_id="gen-button")
                    text_button = gr.Button("✨ Generate Image", variant='primary', elem_classes=["generate-btn"])

                
            with gr.Column():
                with gr.Row():
                    image_output = gr.Image(type="pil", label="Image Output", elem_id="gallery")
                gr.Examples(
                    examples=lora_examples,
                    inputs=[custom_lora],
                    label="Select a LoRA Model",
                )
        
        # gr.Markdown(article_text)
        with gr.Column():
            gr.Examples(
                examples = examples,
                inputs = [text_prompt],
            )
    gr.on(
        triggers=[text_button.click, text_prompt.submit],
        fn = infer,
        inputs=[text_prompt, seed, randomize_seed, width, height, cfg, steps, custom_lora, lora_scale], 
        outputs=[image_output, seed]
    )
        
        # text_button.click(query, inputs=[custom_lora, text_prompt, steps, cfg, randomize_seed, seed, width, height], outputs=[image_output,seed_output, seed])
        # text_button.click(infer, inputs=[text_prompt, seed, randomize_seed, width, height, cfg, steps, custom_lora, lora_scale], outputs=[image_output,seed_output, seed])

app.launch(mcp_server=True, share=True)