Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -3,7 +3,7 @@ import numpy as np
|
|
| 3 |
import random
|
| 4 |
import spaces
|
| 5 |
import torch
|
| 6 |
-
from diffusers import
|
| 7 |
|
| 8 |
import os
|
| 9 |
import requests
|
|
@@ -16,7 +16,7 @@ device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
| 16 |
|
| 17 |
|
| 18 |
# Load the model pipeline
|
| 19 |
-
pipe =
|
| 20 |
|
| 21 |
torch.cuda.empty_cache()
|
| 22 |
|
|
@@ -85,8 +85,7 @@ def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidan
|
|
| 85 |
height=height,
|
| 86 |
num_inference_steps=num_inference_steps,
|
| 87 |
generator=generator,
|
| 88 |
-
|
| 89 |
-
guidance_scale=1.0 # Use a fixed default for distilled guidance
|
| 90 |
).images[0]
|
| 91 |
print("Image Generation Completed for: ", prompt, lora_id)
|
| 92 |
return image, seed
|
|
@@ -141,8 +140,8 @@ with gr.Blocks(css=css) as app:
|
|
| 141 |
seed = gr.Slider(label="Seed", value=-1, minimum=-1, maximum=4294967296, step=1)
|
| 142 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
| 143 |
with gr.Row():
|
| 144 |
-
steps = gr.Slider(label="Inference steps steps", value=
|
| 145 |
-
cfg = gr.Slider(label="Guidance Scale", value=
|
| 146 |
# method = gr.Radio(label="Sampling method", value="DPM++ 2M Karras", choices=["DPM++ 2M Karras", "DPM++ SDE Karras", "Euler", "Euler a", "Heun", "DDIM"])
|
| 147 |
|
| 148 |
with gr.Row():
|
|
|
|
| 3 |
import random
|
| 4 |
import spaces
|
| 5 |
import torch
|
| 6 |
+
from diffusers import ZImagePipeline
|
| 7 |
|
| 8 |
import os
|
| 9 |
import requests
|
|
|
|
| 16 |
|
| 17 |
|
| 18 |
# Load the model pipeline
|
| 19 |
+
pipe = ZImagePipeline.from_pretrained("Tongyi-MAI/Z-Image-Turbo", torch_dtype=dtype, low_cpu_mem_usage=False).to(device)
|
| 20 |
|
| 21 |
torch.cuda.empty_cache()
|
| 22 |
|
|
|
|
| 85 |
height=height,
|
| 86 |
num_inference_steps=num_inference_steps,
|
| 87 |
generator=generator,
|
| 88 |
+
guidance_scale=guidance_scale # Use a fixed default for distilled guidance
|
|
|
|
| 89 |
).images[0]
|
| 90 |
print("Image Generation Completed for: ", prompt, lora_id)
|
| 91 |
return image, seed
|
|
|
|
| 140 |
seed = gr.Slider(label="Seed", value=-1, minimum=-1, maximum=4294967296, step=1)
|
| 141 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
| 142 |
with gr.Row():
|
| 143 |
+
steps = gr.Slider(label="Inference steps steps", value=9, minimum=1, maximum=20, step=1)
|
| 144 |
+
cfg = gr.Slider(label="Guidance Scale", value=0, minimum=0, maximum=20, step=0.5)
|
| 145 |
# method = gr.Radio(label="Sampling method", value="DPM++ 2M Karras", choices=["DPM++ 2M Karras", "DPM++ SDE Karras", "Euler", "Euler a", "Heun", "DDIM"])
|
| 146 |
|
| 147 |
with gr.Row():
|