czl's picture
update layout
70ca747 verified
raw
history blame
12.4 kB
import random
import gradio as gr
import numpy as np
import torch
import torchvision.transforms as transforms
from torchmetrics.functional.image import structural_similarity_index_measure as ssim
from transformers import CLIPModel, CLIPProcessor
from tools import synth
device = "cuda" if torch.cuda.is_available() else "cpu"
model_path = "runwayml/stable-diffusion-v1-5"
clip_model = CLIPModel.from_pretrained("openai/clip-vit-large-patch14").to(device)
clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-large-patch14")
if torch.cuda.is_available():
torch.cuda.max_memory_allocated(device=device)
pipe = synth.pipe_img(
model_path=model_path,
device=device,
use_torchcompile=False,
)
else:
pipe = synth.pipe_img(
model_path=model_path,
device=device,
apply_optimization=False,
)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
def infer(
input_image,
prompt1,
prompt2,
negative_prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
interpolation_step,
num_inference_steps,
num_interpolation_steps,
sample_mid_interpolation,
remove_n_middle,
):
device = "cuda" if torch.cuda.is_available() else "cpu"
# Input Validation
try:
assert num_interpolation_steps % 2 == 0
except AssertionError:
raise ValueError("num_interpolation_steps must be an even number")
try:
assert sample_mid_interpolation % 2 == 0
except AssertionError:
raise ValueError("sample_mid_interpolation must be an even number")
try:
assert remove_n_middle % 2 == 0
except AssertionError:
raise ValueError("remove_n_middle must be an even number")
try:
assert num_interpolation_steps >= sample_mid_interpolation
except AssertionError:
raise ValueError(
"num_interpolation_steps must be greater than or equal to sample_mid_interpolation"
)
try:
assert num_interpolation_steps >= 2 and sample_mid_interpolation >= 2
except AssertionError:
raise ValueError(
"num_interpolation_steps and sample_mid_interpolation must be greater than or equal to 2"
)
try:
assert sample_mid_interpolation - remove_n_middle >= 2
except AssertionError:
raise ValueError(
"sample_mid_interpolation must be greater than or equal to remove_n_middle + 2"
)
if randomize_seed:
seed = random.randint(0, MAX_SEED)
prompts = [prompt1, prompt2]
generator = torch.Generator().manual_seed(seed)
interpolated_prompt_embeds, prompt_metadata = synth.interpolatePrompts(
prompts,
pipe,
num_interpolation_steps,
sample_mid_interpolation,
remove_n_middle=remove_n_middle,
device=device,
)
negative_prompts = [negative_prompt, negative_prompt]
if negative_prompts != ["", ""]:
interpolated_negative_prompts_embeds, _ = synth.interpolatePrompts(
negative_prompts,
pipe,
num_interpolation_steps,
sample_mid_interpolation,
remove_n_middle=remove_n_middle,
device=device,
)
else:
interpolated_negative_prompts_embeds, _ = [None] * len(
interpolated_prompt_embeds
), None
latents = torch.randn(
(1, pipe.unet.config.in_channels, height // 8, width // 8),
generator=generator,
).to(device)
embed_pairs = zip(interpolated_prompt_embeds, interpolated_negative_prompts_embeds)
embed_pairs_list = list(embed_pairs)
print(len(embed_pairs_list))
# offset step by -1
prompt_embeds, negative_prompt_embeds = embed_pairs_list[interpolation_step - 1]
preprocess_input = transforms.Compose(
[transforms.ToTensor(), transforms.Resize((512, 512))]
)
input_img_tensor = preprocess_input(input_image).unsqueeze(0)
if negative_prompt_embeds is not None:
npe = negative_prompt_embeds[None, ...]
else:
npe = None
image = pipe(
height=height,
width=width,
num_images_per_prompt=1,
prompt_embeds=prompt_embeds[None, ...],
negative_prompt_embeds=npe,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
generator=generator,
latents=latents,
image=input_img_tensor,
).images[0]
pred_image = transforms.ToTensor()(image).unsqueeze(0)
ssim_score = ssim(pred_image, input_img_tensor).item()
real_inputs = clip_processor(
text=prompts, padding=True, images=input_image, return_tensors="pt"
).to(device)
real_output = clip_model(**real_inputs)
synth_inputs = clip_processor(
text=prompts, padding=True, images=image, return_tensors="pt"
).to(device)
synth_output = clip_model(**synth_inputs)
cos_sim = torch.nn.CosineSimilarity(dim=1)
cosine_sim = (
cos_sim(real_output.image_embeds, synth_output.image_embeds)
.detach()
.cpu()
.numpy()
.squeeze()
* 100
)
return image, seed, round(ssim_score, 4), round(cosine_sim, 2)
examples1 = [
"A photo of a chain saw, chainsaw",
"A photo of a Shih-Tzu, a type of dog",
]
examples2 = [
"A photo of a golf ball",
"A photo of a beagle, a type of dog",
]
def update_steps(total_steps, interpolation_step):
if interpolation_step > total_steps:
return gr.update(maximum=total_steps // 2, value=total_steps)
return gr.update(maximum=total_steps // 2)
def update_sampling_steps(total_steps, sample_steps):
# if sample_steps > total_steps:
# return gr.update(value=total_steps)
return gr.update(value=total_steps)
if torch.cuda.is_available():
power_device = "GPU"
else:
power_device = "CPU"
with gr.Blocks(title="Generative Date Augmentation") as demo:
gr.Markdown(
"""
# Data Augmentation with Image-to-Image Diffusion Models via Prompt Interpolation.
"""
)
with gr.Row():
with gr.Column():
input_image = gr.Image(type="pil", label="Image to Augment")
with gr.Row():
prompt1 = gr.Text(
label="Prompt 1",
show_label=True,
max_lines=1,
placeholder="Enter your first prompt",
container=False,
)
with gr.Row():
prompt2 = gr.Text(
label="Prompt 2",
show_label=True,
max_lines=1,
placeholder="Enter your second prompt",
container=False,
)
with gr.Row():
gr.Examples(
examples=examples1, inputs=[prompt1], label="Example for Prompt 1"
)
gr.Examples(
examples=examples2, inputs=[prompt2], label="Example for Prompt 2"
)
with gr.Row():
interpolation_step = gr.Slider(
label="Specific Interpolation Step",
minimum=1,
maximum=8,
step=1,
value=8,
)
num_interpolation_steps = gr.Slider(
label="Total interpolation steps",
minimum=2,
maximum=32,
step=2,
value=16,
)
num_interpolation_steps.change(
fn=update_steps,
inputs=[num_interpolation_steps, interpolation_step],
outputs=[interpolation_step],
)
run_button = gr.Button("Run", scale=0)
with gr.Accordion("Advanced Settings", open=True):
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
visible=False,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
gr.Markdown("Negative Prompt: ")
with gr.Row():
negative_prompt = gr.Text(
label="Negative Prompt",
show_label=True,
max_lines=1,
value="blurry image, disfigured, deformed, distorted, cartoon, drawings",
container=False,
)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=512,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=512,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=8.0,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=80,
step=1,
value=25,
)
with gr.Row():
sample_mid_interpolation = gr.Slider(
label="Number of sampling steps in the middle of interpolation",
minimum=2,
maximum=80,
step=2,
value=16,
)
num_interpolation_steps.change(
fn=update_sampling_steps,
inputs=[num_interpolation_steps, sample_mid_interpolation],
outputs=[sample_mid_interpolation],
)
with gr.Row():
remove_n_middle = gr.Slider(
label="Number of middle steps to remove from interpolation",
minimum=0,
maximum=80,
step=2,
value=0,
)
with gr.Column():
result = gr.Image(label="Result", show_label=False)
gr.Markdown(
"""
Metadata:
"""
)
with gr.Row():
show_seed = gr.Label(label="Seed:", value="Randomized seed")
ssim_score = gr.Label(
label="SSIM Score:", value="Generate to see score"
)
cos_sim = gr.Label(label="CLIP Score:", value="Generate to see score")
gr.Markdown(
f"""
Currently running on {power_device}.
"""
)
run_button.click(
fn=infer,
inputs=[
input_image,
prompt1,
prompt2,
negative_prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
interpolation_step,
num_inference_steps,
num_interpolation_steps,
sample_mid_interpolation,
remove_n_middle,
],
outputs=[result, show_seed, ssim_score, cos_sim],
)
demo.queue().launch(show_error=True)
"""
input_image,
prompt1,
prompt2,
negative_prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
interpolation_step,
num_inference_steps,
num_interpolation_steps,
sample_mid_interpolation,
remove_n_middle,
"""