Spaces:
Running
on
Zero
Running
on
Zero
update layout
Browse files
app.py
CHANGED
|
@@ -50,11 +50,43 @@ def infer(
|
|
| 50 |
):
|
| 51 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 52 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
if randomize_seed:
|
| 54 |
seed = random.randint(0, MAX_SEED)
|
| 55 |
prompts = [prompt1, prompt2]
|
| 56 |
generator = torch.Generator().manual_seed(seed)
|
| 57 |
-
|
| 58 |
interpolated_prompt_embeds, prompt_metadata = synth.interpolatePrompts(
|
| 59 |
prompts,
|
| 60 |
pipe,
|
|
@@ -65,18 +97,16 @@ def infer(
|
|
| 65 |
)
|
| 66 |
negative_prompts = [negative_prompt, negative_prompt]
|
| 67 |
if negative_prompts != ["", ""]:
|
| 68 |
-
interpolated_negative_prompts_embeds,
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
device=device,
|
| 76 |
-
)
|
| 77 |
)
|
| 78 |
else:
|
| 79 |
-
interpolated_negative_prompts_embeds,
|
| 80 |
interpolated_prompt_embeds
|
| 81 |
), None
|
| 82 |
|
|
@@ -129,7 +159,7 @@ def infer(
|
|
| 129 |
* 100
|
| 130 |
)
|
| 131 |
|
| 132 |
-
return image, seed, ssim_score, cosine_sim
|
| 133 |
|
| 134 |
|
| 135 |
examples1 = [
|
|
@@ -141,12 +171,6 @@ examples2 = [
|
|
| 141 |
"A photo of a beagle, a type of dog",
|
| 142 |
]
|
| 143 |
|
| 144 |
-
css = """
|
| 145 |
-
#col-container {
|
| 146 |
-
margin: 0 auto;
|
| 147 |
-
}
|
| 148 |
-
"""
|
| 149 |
-
|
| 150 |
|
| 151 |
def update_steps(total_steps, interpolation_step):
|
| 152 |
if interpolation_step > total_steps:
|
|
@@ -154,181 +178,191 @@ def update_steps(total_steps, interpolation_step):
|
|
| 154 |
return gr.update(maximum=total_steps // 2)
|
| 155 |
|
| 156 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 157 |
if torch.cuda.is_available():
|
| 158 |
power_device = "GPU"
|
| 159 |
else:
|
| 160 |
power_device = "CPU"
|
| 161 |
|
| 162 |
-
with gr.Blocks(
|
| 163 |
|
| 164 |
-
|
| 165 |
-
gr.Markdown(
|
| 166 |
-
f"""
|
| 167 |
-
# Data Augmentation with Image-to-Image Diffusion Models via Prompt Interpolation
|
| 168 |
-
Currently running on {power_device}.
|
| 169 |
"""
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
with gr.
|
| 175 |
-
prompt1 = gr.Text(
|
| 176 |
-
label="Prompt 1",
|
| 177 |
-
show_label=True,
|
| 178 |
-
max_lines=1,
|
| 179 |
-
placeholder="Enter your first prompt",
|
| 180 |
-
container=False,
|
| 181 |
-
)
|
| 182 |
-
with gr.Row():
|
| 183 |
-
prompt2 = gr.Text(
|
| 184 |
-
label="Prompt 2",
|
| 185 |
-
show_label=True,
|
| 186 |
-
max_lines=1,
|
| 187 |
-
placeholder="Enter your second prompt",
|
| 188 |
-
container=False,
|
| 189 |
-
)
|
| 190 |
-
with gr.Row():
|
| 191 |
-
gr.Examples(
|
| 192 |
-
examples=examples1, inputs=[prompt1], label="Example for Prompt 1"
|
| 193 |
-
)
|
| 194 |
-
gr.Examples(
|
| 195 |
-
examples=examples2, inputs=[prompt2], label="Example for Prompt 2"
|
| 196 |
-
)
|
| 197 |
-
|
| 198 |
-
with gr.Row():
|
| 199 |
-
num_interpolation_steps = gr.Slider(
|
| 200 |
-
label="Total interpolation steps",
|
| 201 |
-
minimum=2,
|
| 202 |
-
maximum=32,
|
| 203 |
-
step=2,
|
| 204 |
-
value=16,
|
| 205 |
-
)
|
| 206 |
-
interpolation_step = gr.Slider(
|
| 207 |
-
label="Specific Interpolation Step",
|
| 208 |
-
minimum=1,
|
| 209 |
-
maximum=8,
|
| 210 |
-
step=1,
|
| 211 |
-
value=8,
|
| 212 |
-
)
|
| 213 |
-
num_interpolation_steps.change(
|
| 214 |
-
fn=update_steps,
|
| 215 |
-
inputs=[num_interpolation_steps, interpolation_step],
|
| 216 |
-
outputs=[interpolation_step],
|
| 217 |
-
)
|
| 218 |
-
run_button = gr.Button("Run", scale=0)
|
| 219 |
-
|
| 220 |
-
result = gr.Image(label="Result", show_label=False)
|
| 221 |
-
|
| 222 |
-
with gr.Accordion("Advanced Settings", open=True):
|
| 223 |
-
|
| 224 |
-
negative_prompt = gr.Text(
|
| 225 |
-
label="Negative prompt",
|
| 226 |
-
max_lines=1,
|
| 227 |
-
placeholder="Enter a negative prompt",
|
| 228 |
-
visible=False,
|
| 229 |
-
)
|
| 230 |
-
|
| 231 |
-
seed = gr.Slider(
|
| 232 |
-
label="Seed",
|
| 233 |
-
minimum=0,
|
| 234 |
-
maximum=MAX_SEED,
|
| 235 |
-
step=1,
|
| 236 |
-
value=0,
|
| 237 |
-
)
|
| 238 |
|
| 239 |
-
|
| 240 |
|
| 241 |
-
gr.Markdown("Negative Prompt: ")
|
| 242 |
with gr.Row():
|
| 243 |
-
|
| 244 |
-
label="
|
| 245 |
show_label=True,
|
| 246 |
max_lines=1,
|
| 247 |
-
|
| 248 |
container=False,
|
| 249 |
)
|
| 250 |
with gr.Row():
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
value=512,
|
| 258 |
-
)
|
| 259 |
-
|
| 260 |
-
height = gr.Slider(
|
| 261 |
-
label="Height",
|
| 262 |
-
minimum=256,
|
| 263 |
-
maximum=MAX_IMAGE_SIZE,
|
| 264 |
-
step=32,
|
| 265 |
-
value=512,
|
| 266 |
)
|
| 267 |
-
|
| 268 |
with gr.Row():
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
step=0.1,
|
| 275 |
-
value=8.0,
|
| 276 |
)
|
| 277 |
|
| 278 |
-
|
| 279 |
-
|
|
|
|
| 280 |
minimum=1,
|
| 281 |
-
maximum=
|
| 282 |
step=1,
|
| 283 |
-
value=
|
| 284 |
)
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
label="Number of sampling steps in the middle of interpolation",
|
| 288 |
minimum=2,
|
| 289 |
-
maximum=
|
| 290 |
step=2,
|
| 291 |
value=16,
|
| 292 |
)
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 296 |
minimum=0,
|
| 297 |
-
maximum=
|
| 298 |
-
step=
|
| 299 |
value=0,
|
| 300 |
)
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 305 |
)
|
| 306 |
-
with gr.Row():
|
| 307 |
-
show_seed = gr.Label(label="Seed:", value="Randomized seed")
|
| 308 |
-
ssim_score = gr.Label(label="SSIM Score:", value="Generate to see score")
|
| 309 |
-
cos_sim = gr.Label(label="CLIP Score:", value="Generate to see score")
|
| 310 |
-
run_button.click(
|
| 311 |
-
fn=infer,
|
| 312 |
-
inputs=[
|
| 313 |
-
input_image,
|
| 314 |
-
prompt1,
|
| 315 |
-
prompt2,
|
| 316 |
-
negative_prompt,
|
| 317 |
-
seed,
|
| 318 |
-
randomize_seed,
|
| 319 |
-
width,
|
| 320 |
-
height,
|
| 321 |
-
guidance_scale,
|
| 322 |
-
interpolation_step,
|
| 323 |
-
num_inference_steps,
|
| 324 |
-
num_interpolation_steps,
|
| 325 |
-
sample_mid_interpolation,
|
| 326 |
-
remove_n_middle,
|
| 327 |
-
],
|
| 328 |
-
outputs=[result, show_seed, ssim_score, cos_sim],
|
| 329 |
-
)
|
| 330 |
|
| 331 |
-
demo.queue().launch()
|
| 332 |
|
| 333 |
"""
|
| 334 |
input_image,
|
|
|
|
| 50 |
):
|
| 51 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 52 |
|
| 53 |
+
# Input Validation
|
| 54 |
+
try:
|
| 55 |
+
assert num_interpolation_steps % 2 == 0
|
| 56 |
+
except AssertionError:
|
| 57 |
+
raise ValueError("num_interpolation_steps must be an even number")
|
| 58 |
+
try:
|
| 59 |
+
assert sample_mid_interpolation % 2 == 0
|
| 60 |
+
except AssertionError:
|
| 61 |
+
raise ValueError("sample_mid_interpolation must be an even number")
|
| 62 |
+
try:
|
| 63 |
+
assert remove_n_middle % 2 == 0
|
| 64 |
+
except AssertionError:
|
| 65 |
+
raise ValueError("remove_n_middle must be an even number")
|
| 66 |
+
try:
|
| 67 |
+
assert num_interpolation_steps >= sample_mid_interpolation
|
| 68 |
+
except AssertionError:
|
| 69 |
+
raise ValueError(
|
| 70 |
+
"num_interpolation_steps must be greater than or equal to sample_mid_interpolation"
|
| 71 |
+
)
|
| 72 |
+
try:
|
| 73 |
+
assert num_interpolation_steps >= 2 and sample_mid_interpolation >= 2
|
| 74 |
+
except AssertionError:
|
| 75 |
+
raise ValueError(
|
| 76 |
+
"num_interpolation_steps and sample_mid_interpolation must be greater than or equal to 2"
|
| 77 |
+
)
|
| 78 |
+
try:
|
| 79 |
+
assert sample_mid_interpolation - remove_n_middle >= 2
|
| 80 |
+
except AssertionError:
|
| 81 |
+
raise ValueError(
|
| 82 |
+
"sample_mid_interpolation must be greater than or equal to remove_n_middle + 2"
|
| 83 |
+
)
|
| 84 |
+
|
| 85 |
if randomize_seed:
|
| 86 |
seed = random.randint(0, MAX_SEED)
|
| 87 |
prompts = [prompt1, prompt2]
|
| 88 |
generator = torch.Generator().manual_seed(seed)
|
| 89 |
+
|
| 90 |
interpolated_prompt_embeds, prompt_metadata = synth.interpolatePrompts(
|
| 91 |
prompts,
|
| 92 |
pipe,
|
|
|
|
| 97 |
)
|
| 98 |
negative_prompts = [negative_prompt, negative_prompt]
|
| 99 |
if negative_prompts != ["", ""]:
|
| 100 |
+
interpolated_negative_prompts_embeds, _ = synth.interpolatePrompts(
|
| 101 |
+
negative_prompts,
|
| 102 |
+
pipe,
|
| 103 |
+
num_interpolation_steps,
|
| 104 |
+
sample_mid_interpolation,
|
| 105 |
+
remove_n_middle=remove_n_middle,
|
| 106 |
+
device=device,
|
|
|
|
|
|
|
| 107 |
)
|
| 108 |
else:
|
| 109 |
+
interpolated_negative_prompts_embeds, _ = [None] * len(
|
| 110 |
interpolated_prompt_embeds
|
| 111 |
), None
|
| 112 |
|
|
|
|
| 159 |
* 100
|
| 160 |
)
|
| 161 |
|
| 162 |
+
return image, seed, round(ssim_score, 4), round(cosine_sim, 2)
|
| 163 |
|
| 164 |
|
| 165 |
examples1 = [
|
|
|
|
| 171 |
"A photo of a beagle, a type of dog",
|
| 172 |
]
|
| 173 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 174 |
|
| 175 |
def update_steps(total_steps, interpolation_step):
|
| 176 |
if interpolation_step > total_steps:
|
|
|
|
| 178 |
return gr.update(maximum=total_steps // 2)
|
| 179 |
|
| 180 |
|
| 181 |
+
def update_sampling_steps(total_steps, sample_steps):
|
| 182 |
+
# if sample_steps > total_steps:
|
| 183 |
+
# return gr.update(value=total_steps)
|
| 184 |
+
return gr.update(value=total_steps)
|
| 185 |
+
|
| 186 |
+
|
| 187 |
if torch.cuda.is_available():
|
| 188 |
power_device = "GPU"
|
| 189 |
else:
|
| 190 |
power_device = "CPU"
|
| 191 |
|
| 192 |
+
with gr.Blocks(title="Generative Date Augmentation") as demo:
|
| 193 |
|
| 194 |
+
gr.Markdown(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 195 |
"""
|
| 196 |
+
# Data Augmentation with Image-to-Image Diffusion Models via Prompt Interpolation.
|
| 197 |
+
"""
|
| 198 |
+
)
|
| 199 |
+
with gr.Row():
|
| 200 |
+
with gr.Column():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 201 |
|
| 202 |
+
input_image = gr.Image(type="pil", label="Image to Augment")
|
| 203 |
|
|
|
|
| 204 |
with gr.Row():
|
| 205 |
+
prompt1 = gr.Text(
|
| 206 |
+
label="Prompt 1",
|
| 207 |
show_label=True,
|
| 208 |
max_lines=1,
|
| 209 |
+
placeholder="Enter your first prompt",
|
| 210 |
container=False,
|
| 211 |
)
|
| 212 |
with gr.Row():
|
| 213 |
+
prompt2 = gr.Text(
|
| 214 |
+
label="Prompt 2",
|
| 215 |
+
show_label=True,
|
| 216 |
+
max_lines=1,
|
| 217 |
+
placeholder="Enter your second prompt",
|
| 218 |
+
container=False,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 219 |
)
|
|
|
|
| 220 |
with gr.Row():
|
| 221 |
+
gr.Examples(
|
| 222 |
+
examples=examples1, inputs=[prompt1], label="Example for Prompt 1"
|
| 223 |
+
)
|
| 224 |
+
gr.Examples(
|
| 225 |
+
examples=examples2, inputs=[prompt2], label="Example for Prompt 2"
|
|
|
|
|
|
|
| 226 |
)
|
| 227 |
|
| 228 |
+
with gr.Row():
|
| 229 |
+
interpolation_step = gr.Slider(
|
| 230 |
+
label="Specific Interpolation Step",
|
| 231 |
minimum=1,
|
| 232 |
+
maximum=8,
|
| 233 |
step=1,
|
| 234 |
+
value=8,
|
| 235 |
)
|
| 236 |
+
num_interpolation_steps = gr.Slider(
|
| 237 |
+
label="Total interpolation steps",
|
|
|
|
| 238 |
minimum=2,
|
| 239 |
+
maximum=32,
|
| 240 |
step=2,
|
| 241 |
value=16,
|
| 242 |
)
|
| 243 |
+
num_interpolation_steps.change(
|
| 244 |
+
fn=update_steps,
|
| 245 |
+
inputs=[num_interpolation_steps, interpolation_step],
|
| 246 |
+
outputs=[interpolation_step],
|
| 247 |
+
)
|
| 248 |
+
run_button = gr.Button("Run", scale=0)
|
| 249 |
+
with gr.Accordion("Advanced Settings", open=True):
|
| 250 |
+
negative_prompt = gr.Text(
|
| 251 |
+
label="Negative prompt",
|
| 252 |
+
max_lines=1,
|
| 253 |
+
placeholder="Enter a negative prompt",
|
| 254 |
+
visible=False,
|
| 255 |
+
)
|
| 256 |
+
seed = gr.Slider(
|
| 257 |
+
label="Seed",
|
| 258 |
minimum=0,
|
| 259 |
+
maximum=MAX_SEED,
|
| 260 |
+
step=1,
|
| 261 |
value=0,
|
| 262 |
)
|
| 263 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
| 264 |
+
gr.Markdown("Negative Prompt: ")
|
| 265 |
+
with gr.Row():
|
| 266 |
+
negative_prompt = gr.Text(
|
| 267 |
+
label="Negative Prompt",
|
| 268 |
+
show_label=True,
|
| 269 |
+
max_lines=1,
|
| 270 |
+
value="blurry image, disfigured, deformed, distorted, cartoon, drawings",
|
| 271 |
+
container=False,
|
| 272 |
+
)
|
| 273 |
+
with gr.Row():
|
| 274 |
+
width = gr.Slider(
|
| 275 |
+
label="Width",
|
| 276 |
+
minimum=256,
|
| 277 |
+
maximum=MAX_IMAGE_SIZE,
|
| 278 |
+
step=32,
|
| 279 |
+
value=512,
|
| 280 |
+
)
|
| 281 |
+
height = gr.Slider(
|
| 282 |
+
label="Height",
|
| 283 |
+
minimum=256,
|
| 284 |
+
maximum=MAX_IMAGE_SIZE,
|
| 285 |
+
step=32,
|
| 286 |
+
value=512,
|
| 287 |
+
)
|
| 288 |
+
with gr.Row():
|
| 289 |
+
guidance_scale = gr.Slider(
|
| 290 |
+
label="Guidance scale",
|
| 291 |
+
minimum=0.0,
|
| 292 |
+
maximum=10.0,
|
| 293 |
+
step=0.1,
|
| 294 |
+
value=8.0,
|
| 295 |
+
)
|
| 296 |
+
num_inference_steps = gr.Slider(
|
| 297 |
+
label="Number of inference steps",
|
| 298 |
+
minimum=1,
|
| 299 |
+
maximum=80,
|
| 300 |
+
step=1,
|
| 301 |
+
value=25,
|
| 302 |
+
)
|
| 303 |
+
with gr.Row():
|
| 304 |
+
sample_mid_interpolation = gr.Slider(
|
| 305 |
+
label="Number of sampling steps in the middle of interpolation",
|
| 306 |
+
minimum=2,
|
| 307 |
+
maximum=80,
|
| 308 |
+
step=2,
|
| 309 |
+
value=16,
|
| 310 |
+
)
|
| 311 |
+
num_interpolation_steps.change(
|
| 312 |
+
fn=update_sampling_steps,
|
| 313 |
+
inputs=[num_interpolation_steps, sample_mid_interpolation],
|
| 314 |
+
outputs=[sample_mid_interpolation],
|
| 315 |
+
)
|
| 316 |
+
with gr.Row():
|
| 317 |
+
remove_n_middle = gr.Slider(
|
| 318 |
+
label="Number of middle steps to remove from interpolation",
|
| 319 |
+
minimum=0,
|
| 320 |
+
maximum=80,
|
| 321 |
+
step=2,
|
| 322 |
+
value=0,
|
| 323 |
+
)
|
| 324 |
+
with gr.Column():
|
| 325 |
+
result = gr.Image(label="Result", show_label=False)
|
| 326 |
+
|
| 327 |
+
gr.Markdown(
|
| 328 |
+
"""
|
| 329 |
+
Metadata:
|
| 330 |
+
"""
|
| 331 |
+
)
|
| 332 |
+
with gr.Row():
|
| 333 |
+
show_seed = gr.Label(label="Seed:", value="Randomized seed")
|
| 334 |
+
ssim_score = gr.Label(
|
| 335 |
+
label="SSIM Score:", value="Generate to see score"
|
| 336 |
+
)
|
| 337 |
+
cos_sim = gr.Label(label="CLIP Score:", value="Generate to see score")
|
| 338 |
+
gr.Markdown(
|
| 339 |
+
f"""
|
| 340 |
+
Currently running on {power_device}.
|
| 341 |
+
"""
|
| 342 |
+
)
|
| 343 |
+
|
| 344 |
+
run_button.click(
|
| 345 |
+
fn=infer,
|
| 346 |
+
inputs=[
|
| 347 |
+
input_image,
|
| 348 |
+
prompt1,
|
| 349 |
+
prompt2,
|
| 350 |
+
negative_prompt,
|
| 351 |
+
seed,
|
| 352 |
+
randomize_seed,
|
| 353 |
+
width,
|
| 354 |
+
height,
|
| 355 |
+
guidance_scale,
|
| 356 |
+
interpolation_step,
|
| 357 |
+
num_inference_steps,
|
| 358 |
+
num_interpolation_steps,
|
| 359 |
+
sample_mid_interpolation,
|
| 360 |
+
remove_n_middle,
|
| 361 |
+
],
|
| 362 |
+
outputs=[result, show_seed, ssim_score, cos_sim],
|
| 363 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 364 |
|
| 365 |
+
demo.queue().launch(show_error=True)
|
| 366 |
|
| 367 |
"""
|
| 368 |
input_image,
|