File size: 26,356 Bytes
80aa632 8ca7c55 12f33e3 80aa632 842e55c 80aa632 310c475 80aa632 f95d799 80aa632 8ca7c55 80aa632 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 |
from fastapi import FastAPI, File, UploadFile, HTTPException, BackgroundTasks
from fastapi.responses import FileResponse, JSONResponse, StreamingResponse
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
from typing import Optional, List, Dict, Any
import cv2
import numpy as np
import mediapipe as mp
from pathlib import Path
import json
import subprocess
import os
import soundfile as sf
from datetime import datetime
import tempfile
import pandas as pd
import shutil
import asyncio
from concurrent.futures import ThreadPoolExecutor
import base64
from io import BytesIO
from agent2 import process_video_for_footstep_audio as process_video_agent2
# Suppress warnings
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
import absl.logging
absl.logging.set_verbosity(absl.logging.ERROR)
# Mock streamlit before importing real.py
import sys
class MockStreamlit:
def __getattr__(self, name):
def mock_func(*args, **kwargs):
pass
return mock_func
sys.modules['streamlit'] = MockStreamlit()
# Import working classes and functions from real.py
from real import (
HybridFootstepDetectionPipeline,
PersonTracker,
AudioGenerator,
LiveFootstepDetector,
create_annotated_video,
merge_audio_with_video
)
# Import your custom modules
from sound_agent import main_sound
from qsec import extract_second_audio_librosa
app = FastAPI(title="Footstep Detection API", version="1.0.0")
# CORS middleware
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Thread pool for CPU-intensive tasks
executor = ThreadPoolExecutor(max_workers=4)
# ==================== Pydantic Models ====================
class ProcessingConfig(BaseModel):
sensitivity: str = "medium"
yolo_conf: float = 0.5
use_hybrid: bool = True
create_annotated: bool = True
add_audio: bool = True
surface_type: str = "concrete"
class FootstepEvent(BaseModel):
frame: int
timecode: str
foot: str
event: str
time_seconds: float
confidence: float
class ProcessingResult(BaseModel):
task_id: str
status: str
progress: float
events: Optional[List[FootstepEvent]] = None
total_frames: Optional[int] = None
fps: Optional[float] = None
detection_stats: Optional[Dict[str, Any]] = None
error: Optional[str] = None
class LiveDetectionConfig(BaseModel):
sensitivity: str = "medium"
yolo_conf: float = 0.5
# ==================== Storage ====================
# In-memory storage for tasks
tasks_storage = {}
video_storage = {}
def get_ffmpeg_path():
"""Get FFmpeg path"""
ffmpeg_path = shutil.which("ffmpeg")
if ffmpeg_path:
return ffmpeg_path
possible_paths = [
"ffmpeg", # Try system ffmpeg first (Docker/Linux)
r"C:\Users\abhiv\OneDrive\Desktop\agentic ai\SoundFeet\ffmpeg-7.1-essentials_build\bin\ffmpeg.exe", # Local Windows
"./ffmpeg-7.1-essentials_build/bin/ffmpeg.exe", # Relative path
]
for path in possible_paths:
if path == "ffmpeg":
try:
result = subprocess.run([path, '-version'], capture_output=True, timeout=5)
if result.returncode == 0:
return path
except:
continue
else:
if os.path.exists(path):
return path
return None
FFMPEG_PATH = get_ffmpeg_path()
# ==================== API Endpoints ====================
@app.get("/")
async def root():
return {"message": "Footstep Detection API", "version": "1.0.0"}
@app.get("/api/ffmpeg-info")
async def ffmpeg_info():
"""Report FFmpeg availability and version in the running environment"""
path = FFMPEG_PATH or "ffmpeg"
version = None
try:
proc = subprocess.run([path, "-version"], capture_output=True, text=True, timeout=5)
if proc.returncode == 0 and proc.stdout:
version = proc.stdout.splitlines()[0]
except Exception as e:
version = None
exists = None
if path != "ffmpeg":
exists = os.path.exists(path)
return {
"ffmpeg_path": path,
"ffmpeg_exists": exists,
"version": version
}
@app.post("/api/upload-video")
async def upload_video(
file: UploadFile = File(...),
config: Optional[str] = None
):
"""Upload video and create task"""
if not file.content_type.startswith('video/'):
raise HTTPException(status_code=400, detail="File must be a video")
# Generate task ID
task_id = f"task_{datetime.now().strftime('%Y%m%d_%H%M%S')}_{os.urandom(4).hex()}"
# Save video to temp file
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4')
content = await file.read()
temp_file.write(content)
temp_file.close()
# Parse config
if config:
try:
config_dict = json.loads(config)
except:
config_dict = {}
else:
config_dict = {}
processing_config = ProcessingConfig(**config_dict)
# Create task
tasks_storage[task_id] = {
'task_id': task_id,
'status': 'uploaded',
'progress': 0.0,
'video_path': temp_file.name,
'config': processing_config.dict(),
'created_at': datetime.now().isoformat()
}
return {
"task_id": task_id,
"status": "uploaded",
"message": "Video uploaded successfully"
}
@app.post("/api/process/{task_id}")
async def process_video(task_id: str, background_tasks: BackgroundTasks):
"""Start processing video"""
if task_id not in tasks_storage:
raise HTTPException(status_code=404, detail="Task not found")
task = tasks_storage[task_id]
if task['status'] == 'processing':
return {"message": "Task is already being processed"}
task['status'] = 'processing'
task['progress'] = 0.0
background_tasks.add_task(process_video_task, task_id)
return {
"task_id": task_id,
"status": "processing",
"message": "Video processing started"
}
def process_video_task(task_id: str):
"""Background task for video processing"""
try:
task = tasks_storage[task_id]
config = task['config']
video_path = task['video_path']
# Get video info first
cap = cv2.VideoCapture(video_path)
fps = cap.get(cv2.CAP_PROP_FPS)
cap.release()
# Initialize pipeline using real.py's class
pipeline = HybridFootstepDetectionPipeline(
fps=fps,
sensitivity=config['sensitivity'],
yolo_conf=config['yolo_conf']
)
# Process video using real.py's method
def progress_callback(progress):
task['progress'] = progress
results = pipeline.process_video(video_path, progress_callback)
# Update task
task['status'] = 'completed'
task['progress'] = 1.0
task['results'] = results
task['completed_at'] = datetime.now().isoformat()
except Exception as e:
task['status'] = 'failed'
task['error'] = str(e)
task['failed_at'] = datetime.now().isoformat()
@app.get("/api/status/{task_id}")
async def get_task_status(task_id: str):
"""Get task status and progress"""
if task_id not in tasks_storage:
raise HTTPException(status_code=404, detail="Task not found")
task = tasks_storage[task_id]
response = {
"task_id": task_id,
"status": task['status'],
"progress": task['progress']
}
if task['status'] == 'completed' and 'results' in task:
response['results'] = task['results']
elif task['status'] == 'failed':
response['error'] = task.get('error')
return response
@app.post("/api/generate-video/{task_id}")
async def generate_video(task_id: str, background_tasks: BackgroundTasks):
"""Generate annotated video"""
if task_id not in tasks_storage:
raise HTTPException(status_code=404, detail="Task not found")
task = tasks_storage[task_id]
if task['status'] != 'completed':
raise HTTPException(status_code=400, detail="Processing not completed")
if not task.get('results'):
raise HTTPException(status_code=400, detail="No results available")
background_tasks.add_task(generate_video_task, task_id)
return {
"task_id": task_id,
"message": "Video generation started"
}
def generate_video_task(task_id: str):
"""Background task for video generation using real.py's create_annotated_video"""
try:
print(f"[DEBUG] Starting video generation for {task_id}")
task = tasks_storage[task_id]
results = task['results']
video_path = task['video_path']
config = task['config']
task['video_generating'] = True
task['video_ready'] = False
print(f"[DEBUG] Creating annotated video for {task_id}")
# Generate output path
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='_annotated.mp4')
annotated_path = temp_file.name
temp_file.close()
print(f"[DEBUG] Output video path: {annotated_path}")
print(f"[DEBUG] Input video path: {video_path}")
# Use real.py's create_annotated_video function
def progress_callback(progress):
task['video_progress'] = progress
if int(progress * 100) % 10 == 0:
print(f"[DEBUG] Video generation progress: {progress * 100:.1f}%")
success = create_annotated_video(
input_path=video_path,
events=results['events'],
output_path=annotated_path,
use_hybrid=config.get('use_hybrid', True),
progress_callback=progress_callback
)
if not success:
raise Exception("Video annotation failed")
# Verify the file was created
if not os.path.exists(annotated_path):
raise Exception(f"Annotated video file was not created at {annotated_path}")
file_size = os.path.getsize(annotated_path)
print(f"[DEBUG] Annotated video file size: {file_size} bytes")
if file_size == 0:
raise Exception("Annotated video file is empty")
# Update task
task['annotated_video'] = annotated_path
task['video_ready'] = True
task['video_generating'] = False
task['video_progress'] = 1.0
print(f"[DEBUG] Video generation completed for {task_id}")
print(f"[DEBUG] Video file exists: {os.path.exists(annotated_path)}")
except Exception as e:
print(f"[ERROR] Video generation failed for {task_id}: {str(e)}")
import traceback
traceback.print_exc()
task['video_error'] = str(e)
task['video_ready'] = False
task['video_generating'] = False
@app.get("/api/video-status/{task_id}")
async def get_video_status(task_id: str):
"""Check if video is ready for download"""
if task_id not in tasks_storage:
raise HTTPException(status_code=404, detail="Task not found")
task = tasks_storage[task_id]
return {
"task_id": task_id,
"video_ready": task.get('video_ready', False),
"video_generating": task.get('video_generating', False),
"video_progress": task.get('video_progress', 0.0),
"video_error": task.get('video_error', None)
}
@app.get("/api/download-video/{task_id}")
async def download_video(task_id: str):
"""Download annotated video"""
if task_id not in tasks_storage:
raise HTTPException(status_code=404, detail="Task not found")
task = tasks_storage[task_id]
print(f"[DEBUG] Download request for {task_id}")
print(f"[DEBUG] Video ready: {task.get('video_ready')}")
print(f"[DEBUG] Annotated video path: {task.get('annotated_video')}")
if not task.get('video_ready'):
raise HTTPException(status_code=400, detail="Video not ready")
video_path = task.get('annotated_video')
if not video_path:
raise HTTPException(status_code=404, detail="Video path not set")
if not os.path.exists(video_path):
raise HTTPException(status_code=404, detail=f"Video file not found at {video_path}")
return FileResponse(
video_path,
media_type="video/mp4",
filename=f"annotated_{task_id}.mp4"
)
@app.get("/api/export-csv/{task_id}")
async def export_csv(task_id: str):
"""Export results as CSV"""
if task_id not in tasks_storage:
raise HTTPException(status_code=404, detail="Task not found")
task = tasks_storage[task_id]
if task['status'] != 'completed' or 'results' not in task:
raise HTTPException(status_code=400, detail="No results available")
events = task['results']['events']
df = pd.DataFrame(events)
csv_buffer = BytesIO()
df.to_csv(csv_buffer, index=False)
csv_buffer.seek(0)
return StreamingResponse(
csv_buffer,
media_type="text/csv",
headers={"Content-Disposition": f"attachment; filename=footsteps_{task_id}.csv"}
)
@app.get("/api/export-json/{task_id}")
async def export_json(task_id: str):
"""Export results as JSON"""
if task_id not in tasks_storage:
raise HTTPException(status_code=404, detail="Task not found")
task = tasks_storage[task_id]
if task['status'] != 'completed' or 'results' not in task:
raise HTTPException(status_code=400, detail="No results available")
return JSONResponse(content=task['results'])
@app.post("/api/generate-audio-video/{task_id}")
async def generate_audio_video(task_id: str, background_tasks: BackgroundTasks):
"""Generate annotated video with footstep audio"""
if task_id not in tasks_storage:
raise HTTPException(status_code=404, detail="Task not found")
task = tasks_storage[task_id]
if task['status'] != 'completed':
raise HTTPException(status_code=400, detail="Processing not completed")
if not task.get('results'):
raise HTTPException(status_code=400, detail="No results available")
background_tasks.add_task(generate_audio_video_task, task_id)
return {
"task_id": task_id,
"message": "Audio video generation started"
}
def generate_audio_video_task(task_id: str):
"""Background task for generating video with audio using real.py's functions"""
try:
print(f"[DEBUG] Starting audio video generation for {task_id}")
task = tasks_storage[task_id]
results = task['results']
video_path = task['video_path']
config = task['config']
task['audio_video_generating'] = True
task['audio_video_ready'] = False
# Step 1: Generate audio track
print(f"[DEBUG] Generating audio track...")
audio_gen = AudioGenerator()
# Use agent2 to generate audio from video frame
aud_path = process_video_agent2(video_path)
# Verify audio file exists
if not aud_path or not os.path.exists(aud_path):
print(f"[WARNING] Audio file not found at {aud_path}, using fallback")
raise Exception(f"Failed to generate audio file from video")
duration = results['total_frames'] / results['fps']
audio_track = audio_gen.create_audio_track(
results['events'],
aud_path,
duration
)
task['audio_video_progress'] = 0.3
# Step 2: Create annotated video
print(f"[DEBUG] Creating annotated video...")
temp_video = tempfile.NamedTemporaryFile(delete=False, suffix='_temp.mp4')
temp_video_path = temp_video.name
temp_video.close()
def video_progress(progress):
task['audio_video_progress'] = 0.3 + (progress * 0.4) # 30-70%
success = create_annotated_video(
input_path=video_path,
events=results['events'],
output_path=temp_video_path,
use_hybrid=config.get('use_hybrid', True),
progress_callback=video_progress
)
if not success:
raise Exception("Video annotation failed")
task['audio_video_progress'] = 0.7
# Step 3: Merge audio with video
print(f"[DEBUG] Merging audio with video...")
final_output = tempfile.NamedTemporaryFile(delete=False, suffix='_final.mp4')
final_output_path = final_output.name
final_output.close()
merge_success = merge_audio_with_video(
temp_video_path,
audio_track,
44100,
final_output_path
)
if not merge_success:
raise Exception("Audio merge failed")
# Cleanup temp video
if os.path.exists(temp_video_path):
os.remove(temp_video_path)
# Verify final file
if not os.path.exists(final_output_path):
raise Exception(f"Final video file was not created at {final_output_path}")
file_size = os.path.getsize(final_output_path)
print(f"[DEBUG] Final video file size: {file_size} bytes")
if file_size == 0:
raise Exception("Final video file is empty")
# Update task
task['audio_video_path'] = final_output_path
task['audio_video_ready'] = True
task['audio_video_generating'] = False
task['audio_video_progress'] = 1.0
print(f"[DEBUG] Audio video generation completed for {task_id}")
except Exception as e:
print(f"[ERROR] Audio video generation failed for {task_id}: {str(e)}")
import traceback
traceback.print_exc()
task['audio_video_error'] = str(e)
task['audio_video_ready'] = False
task['audio_video_generating'] = False
@app.get("/api/audio-video-status/{task_id}")
async def get_audio_video_status(task_id: str):
"""Check if audio video is ready for download"""
if task_id not in tasks_storage:
raise HTTPException(status_code=404, detail="Task not found")
task = tasks_storage[task_id]
return {
"task_id": task_id,
"audio_video_ready": task.get('audio_video_ready', False),
"audio_video_generating": task.get('audio_video_generating', False),
"audio_video_progress": task.get('audio_video_progress', 0.0),
"audio_video_error": task.get('audio_video_error', None)
}
@app.get("/api/download-audio-video/{task_id}")
async def download_audio_video(task_id: str):
"""Download video with audio"""
if task_id not in tasks_storage:
raise HTTPException(status_code=404, detail="Task not found")
task = tasks_storage[task_id]
if not task.get('audio_video_ready'):
raise HTTPException(status_code=400, detail="Audio video not ready")
video_path = task.get('audio_video_path')
if not video_path:
raise HTTPException(status_code=404, detail="Video path not set")
if not os.path.exists(video_path):
raise HTTPException(status_code=404, detail=f"Video file not found at {video_path}")
return FileResponse(
video_path,
media_type="video/mp4",
filename=f"footsteps_with_audio_{task_id}.mp4"
)
@app.post("/api/live/capture-floor")
async def capture_floor_frame(file: UploadFile = File(...)):
"""Capture floor frame for live mode"""
if not file.content_type.startswith('image/'):
raise HTTPException(status_code=400, detail="File must be an image")
session_id = f"live_{datetime.now().strftime('%Y%m%d_%H%M%S')}_{os.urandom(4).hex()}"
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.jpg')
content = await file.read()
temp_file.write(content)
temp_file.close()
tasks_storage[session_id] = {
'type': 'live',
'floor_frame': temp_file.name,
'created_at': datetime.now().isoformat()
}
return {
"session_id": session_id,
"message": "Floor frame captured"
}
@app.post("/api/live/detect-frame/{session_id}")
async def detect_frame(session_id: str, file: UploadFile = File(...)):
"""Detect footsteps in a single frame using LiveFootstepDetector"""
if session_id not in tasks_storage:
raise HTTPException(status_code=404, detail="Session not found")
if not file.content_type.startswith('image/'):
raise HTTPException(status_code=400, detail="File must be an image")
session = tasks_storage[session_id]
# Read frame
content = await file.read()
nparr = np.frombuffer(content, np.uint8)
frame = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
if frame is None:
raise HTTPException(status_code=400, detail="Failed to decode frame")
# Initialize detector if not already done
if 'detector' not in session:
try:
# Get audio path from session or use default
audio_path = session.get('audio_path', 'backend/audio/UrbanFootstepsConcrete.mp3')
sensitivity = session.get('sensitivity', 'medium')
yolo_conf = session.get('yolo_conf', 0.5)
# Check if audio file exists
if not os.path.exists(audio_path):
# Try alternative paths
alt_paths = [
'audio/UrbanFootstepsConcrete.mp3',
'backend/audio/Footsteps on Gravel Path Outdoor.mp3',
'audio/Footsteps on Gravel Path Outdoor.mp3'
]
audio_found = False
for alt_path in alt_paths:
if os.path.exists(alt_path):
audio_path = alt_path
audio_found = True
break
if not audio_found:
raise HTTPException(status_code=404,
detail=f"Audio file not found. Searched paths: {audio_path}, {alt_paths}")
# Create detector instance
detector = LiveFootstepDetector(
audio_path=audio_path,
sensitivity=sensitivity,
yolo_conf=yolo_conf
)
detector.start() # Start audio playback thread
session['detector'] = detector
session['detector_started'] = datetime.now().isoformat()
except Exception as e:
raise HTTPException(status_code=500, detail=f"Failed to initialize detector: {str(e)}")
detector = session['detector']
# Process frame with detector
try:
processed_frame, detected_foot = detector.process_frame(frame)
# Encode processed frame back to JPEG
_, buffer = cv2.imencode('.jpg', processed_frame)
frame_base64 = base64.b64encode(buffer).decode('utf-8')
response = {
"session_id": session_id,
"detected": detected_foot is not None,
"foot": detected_foot, # 'LEFT', 'RIGHT', or None
"frame": frame_base64, # Processed frame with annotations
"message": f"{detected_foot} STRIKE!" if detected_foot else "Frame processed"
}
# Update session stats
if 'detection_count' not in session:
session['detection_count'] = 0
if detected_foot:
session['detection_count'] += 1
session['last_detection'] = {
'foot': detected_foot,
'timestamp': datetime.now().isoformat()
}
return response
except Exception as e:
raise HTTPException(status_code=500, detail=f"Frame processing error: {str(e)}")
@app.post("/api/live/generate-audio/{session_id}")
async def generate_audio(session_id: str):
"""Generate audio for live detection based on floor analysis"""
if session_id not in tasks_storage:
raise HTTPException(status_code=404, detail="Session not found")
session = tasks_storage[session_id]
if 'floor_frame' not in session:
raise HTTPException(status_code=400, detail="No floor frame found")
# For now, we'll use a default audio path based on common floor types
# In a real implementation, this could use LLM vision to analyze the floor
# and select the appropriate audio file
# Default audio paths to try
audio_paths = [
'audio/Footsteps on Gravel Path Outdoor.mp3'
]
audio_path = None
for path in audio_paths:
if os.path.exists(path):
audio_path = path
break
if not audio_path:
raise HTTPException(
status_code=404,
detail=f"No audio file found. Please ensure audio files exist in backend/audio/ directory. Searched: {audio_paths}"
)
# Store audio path in session for later use
session['audio_path'] = audio_path
session['audio_ready'] = True
session['surface_type'] = 'concrete' # Default, could be enhanced with LLM analysis
return {
"session_id": session_id,
"message": "Audio generated successfully",
"surface_type": session['surface_type'],
"audio_ready": True
}
@app.post("/api/live/stop-session/{session_id}")
async def stop_live_session(session_id: str):
"""Stop live detection session and cleanup resources"""
if session_id not in tasks_storage:
raise HTTPException(status_code=404, detail="Session not found")
session = tasks_storage[session_id]
# Stop detector if exists
if 'detector' in session:
try:
detector = session['detector']
detector.stop()
del session['detector']
except Exception as e:
print(f"Error stopping detector: {e}")
# Cleanup floor frame
if 'floor_frame' in session:
try:
if os.path.exists(session['floor_frame']):
os.remove(session['floor_frame'])
except Exception as e:
print(f"Error removing floor frame: {e}")
# Get stats before deletion
detection_count = session.get('detection_count', 0)
last_detection = session.get('last_detection', None)
# Remove session
del tasks_storage[session_id]
return {
"session_id": session_id,
"message": "Session stopped",
"stats": {
"detection_count": detection_count,
"last_detection": last_detection
}
}
|