ELIA / circuit_analysis /calculate_cpr_cmd.py
aaron0eidt's picture
Deploy static demo
5b6c556
import numpy as np
import networkx as nx
import argparse
import json
import os
import sys
import logging
from typing import List, Tuple
from pathlib import Path
import math
# Ensure we can import the pipeline
sys.path.append(str(Path(__file__).resolve().parent.parent))
from circuit_analysis.attribution_graphs_olmo import (
AttributionGraphsPipeline,
AttributionGraphConfig,
ANALYSIS_PROMPTS,
AttributionGraph
)
# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
def compute_cpr(k_values: List[float], f_values: List[float]) -> float:
"""
Compute CPR (Integrated Circuit Performance Ratio) using the trapezoidal rule.
CPR = Integral of f(C_k) dk
"""
cpr = 0.0
for i in range(len(k_values) - 1):
cpr += 0.5 * (f_values[i] + f_values[i+1]) * (k_values[i+1] - k_values[i])
return cpr
def compute_cmd(k_values: List[float], f_values: List[float]) -> float:
"""
Compute CMD (Integrated Circuit-Model Distance) using the trapezoidal rule.
CMD = Integral of |1 - f(C_k)| dk
"""
cmd = 0.0
for i in range(len(k_values) - 1):
y0 = abs(1.0 - f_values[i])
y1 = abs(1.0 - f_values[i+1])
cmd += 0.5 * (y0 + y1) * (k_values[i+1] - k_values[i])
return cmd
def get_active_features_from_graph(graph: nx.DiGraph) -> List[Tuple[int, int]]:
"""
Extracts the list of feature nodes (as layer_idx, feature_idx tuples) from the graph.
"""
features = []
for node in graph.nodes():
if node.startswith("feat_"):
parts = node.split('_')
try:
# Format: feat_L{layer}_T{token}_F{feature}
layer_idx = int(parts[1][1:])
feature_idx = int(parts[3][1:])
# We only care about unique (layer, feature) pairs for ablation
features.append((layer_idx, feature_idx))
except (IndexError, ValueError):
continue
return list(set(features))
def calculate_graph_importance(attribution_graph_obj: AttributionGraph, graph: nx.DiGraph) -> List[Tuple[str, float]]:
"""
Calculates the importance of each feature node in the graph based on edge weights.
Returns a list of (node_id, importance_score) sorted by importance descending.
"""
node_importance = {}
# Identify feature nodes
feature_nodes = [n for n in graph.nodes() if attribution_graph_obj.node_types.get(n) == "feature"]
# Calculate importance as sum of absolute weights of connected edges
for node in feature_nodes:
importance = 0.0
# Outgoing edges
for _, target in graph.out_edges(node):
weight = attribution_graph_obj.edge_weights.get((node, target), 0.0)
importance += abs(weight)
# Incoming edges? MIB usually focuses on "importance" for the task.
# Using sum of absolute edge weights is a standard proxy.
# attribution_graphs_olmo.py prune_graph uses sum of all connected edge weights (in and out).
for source, _ in graph.in_edges(node):
weight = attribution_graph_obj.edge_weights.get((source, node), 0.0)
importance += abs(weight)
node_importance[node] = importance
return sorted(node_importance.items(), key=lambda x: x[1], reverse=True)
def get_edges_count(graph: nx.DiGraph, nodes: List[str]) -> int:
"""
Returns the number of edges in the subgraph induced by the given nodes
(plus edges to output/embedding if we consider them part of the circuit context).
However, strictly following "fraction of total edges":
We should count edges where BOTH source and target are in the kept set (including embeddings/output).
"""
# Assuming embeddings and output are always "kept" or don't count towards the quota
# if we only ablate features.
# But for the metric k = |C|/|N|, we need a consistent definition.
# Let's define |C| as the number of edges in the subgraph induced by (Selected Features + Embeddings + Output).
nodes_set = set(nodes)
count = 0
for u, v in graph.edges():
if u in nodes_set and v in nodes_set:
count += 1
return count
def run_cpr_cmd_analysis(pipeline: AttributionGraphsPipeline, prompt_idx: int):
"""
Compute CPR and CMD for a given prompt, using:
- Universe: all feature nodes present in the attribution graph
- Metric m: logit(target) only (no foil)
- Interventions: ablation of feature sets with intervention_strength=1.0
"""
prompt = ANALYSIS_PROMPTS[prompt_idx]
logger.info(f"Analyzing prompt {prompt_idx}: '{prompt}'")
# Build/prune the attribution graph for this prompt
pipeline.analyze_prompt(prompt)
full_graph = pipeline.attribution_graph.graph
# Baseline: run once to get logits & feature activations
baseline_data = pipeline.perturbation_experiments._prepare_inputs(prompt, top_k=1)
target_token_id = baseline_data['baseline_top_tokens'].indices[0].item()
baseline_logits = baseline_data['baseline_last_token_logits']
m_N = baseline_logits[target_token_id].item()
logger.info(
f"Baseline m(N) = {m_N:.4f} "
f"(Token: {pipeline.tokenizer.decode([target_token_id])})"
)
# Universe: all feature nodes in the graph
universe_features = get_active_features_from_graph(full_graph)
logger.info(f"Graph Universe size: {len(universe_features)} features")
if not universe_features:
logger.warning("No features found in graph. Skipping.")
return None
# Empty circuit: ablate all universe features
empty_res = pipeline.perturbation_experiments.feature_set_ablation_experiment(
prompt,
feature_set=universe_features,
intervention_strength=1.0,
target_token_id=target_token_id
)
m_empty = empty_res["ablated_logit"]
logger.info(f"Empty m(Ø) = {m_empty:.4f}")
if not math.isfinite(m_empty):
logger.warning(
f"m_empty is non-finite ({m_empty}) for prompt {prompt_idx}; "
"skipping CPR/CMD for this prompt."
)
return None
# Node importance within the graph
sorted_nodes = calculate_graph_importance(pipeline.attribution_graph, full_graph)
total_edges = full_graph.number_of_edges()
k_grid = [0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1.0]
f_values = []
actual_k_values = []
# Embeddings/output are always kept
always_kept_nodes = [n for n in full_graph.nodes() if not n.startswith("feat_")]
logger.info("Computing faithfulness curve...")
for k in k_grid:
target_edge_count = int(k * total_edges)
current_circuit_nodes = list(always_kept_nodes)
current_feature_tuples = []
for node, _ in sorted_nodes:
current_edge_count = get_edges_count(full_graph, current_circuit_nodes)
if current_edge_count >= target_edge_count and len(current_feature_tuples) > 0:
break
current_circuit_nodes.append(node)
parts = node.split("_")
l = int(parts[1][1:])
f = int(parts[3][1:])
current_feature_tuples.append((l, f))
actual_edges = get_edges_count(full_graph, current_circuit_nodes)
actual_k = actual_edges / total_edges if total_edges > 0 else 0.0
actual_k_values.append(actual_k)
# Complement = universe \ current features
current_set = set(current_feature_tuples)
complement_set = [ft for ft in universe_features if ft not in current_set]
if not complement_set:
m_Ck = m_N
else:
res = pipeline.perturbation_experiments.feature_set_ablation_experiment(
prompt,
feature_set=complement_set,
intervention_strength=1.0,
target_token_id=target_token_id
)
m_Ck = res["ablated_logit"]
if not math.isfinite(m_Ck):
logger.warning(
f"Non-finite m_Ck={m_Ck} for k={k:.4f} on prompt {prompt_idx}; "
"skipping this k point."
)
continue
if abs(m_N - m_empty) < 1e-6:
f_k = 0.0
else:
raw_f = (m_Ck - m_empty) / (m_N - m_empty)
f_k = max(0.0, min(1.0, raw_f))
f_values.append(f_k)
if not actual_k_values or not f_values:
logger.warning(f"No valid k-points for prompt {prompt_idx}; skipping.")
return None
pairs = sorted(zip(actual_k_values, f_values), key=lambda x: x[0])
sorted_k = [p[0] for p in pairs]
sorted_f = [p[1] for p in pairs]
if sorted_k[0] > 0.0:
sorted_k.insert(0, 0.0)
sorted_f.insert(0, 0.0)
if sorted_k[-1] < 1.0:
last_f = sorted_f[-1]
sorted_k.append(1.0)
sorted_f.append(last_f)
cpr = compute_cpr(sorted_k, sorted_f)
cmd = compute_cmd(sorted_k, sorted_f)
logger.info(f"Result: CPR={cpr:.4f}, CMD={cmd:.4f}")
return {
"prompt": prompt,
"target_token": pipeline.tokenizer.decode([target_token_id]),
"m_N": m_N,
"m_empty": m_empty,
"curve_k": sorted_k,
"curve_f": sorted_f,
"CPR": cpr,
"CMD": cmd
}
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--output", type=str, default="circuit_analysis/results/cpr_cmd_results.json")
args = parser.parse_args()
# Initialize Pipeline
config = AttributionGraphConfig(
model_path="models/OLMo-2-1124-7B", # Adjust relative path if needed
n_features_per_layer=512, # Back to 512 due to memory constraints
# We want a fairly rich graph to start with, so we can prune it down
graph_feature_activation_threshold=0.01,
graph_edge_weight_threshold=0.003, # Lower threshold for more edges (prev: 0.005)
graph_max_features_per_layer=40, # Increased from 24 (prev: 100 was too slow)
graph_max_edges_per_node=20, # Increased from 12 (prev: 50 was too slow)
# intervention_strength defaults to 5.0 in AttributionGraphConfig, which was working better
intervention_strength=1.0,
)
# Check model path
if not os.path.exists(config.model_path):
# Try absolute python3 circuit_analysis/calculate_cpr_cmd.pypath or relative to script
root_path = Path(__file__).resolve().parent.parent
possible_path = root_path / "models" / "OLMo-2-1124-7B"
if possible_path.exists():
config.model_path = str(possible_path)
else:
# Try the one in current dir?
pass
pipeline = AttributionGraphsPipeline(config)
# Load CLT
clt_path = "circuit_analysis/models/clt_model.pth"
if not os.path.exists(clt_path):
# Try full path
clt_path = str(Path(__file__).resolve().parent / "models" / "clt_model.pth")
if os.path.exists(clt_path):
pipeline.load_clt(clt_path)
else:
logger.error(f"CLT model not found at {clt_path}. Please train it first.")
return
results = []
for i in range(len(ANALYSIS_PROMPTS)):
try:
res = run_cpr_cmd_analysis(pipeline, i)
if res:
results.append(res)
except Exception as e:
logger.error(f"Failed prompt {i}: {e}", exc_info=True)
# Average CPR/CMD
if results:
avg_cpr = np.mean([r['CPR'] for r in results])
avg_cmd = np.mean([r['CMD'] for r in results])
else:
avg_cpr = 0.0
avg_cmd = 0.0
final_output = {
"results": results,
"average_CPR": avg_cpr,
"average_CMD": avg_cmd
}
# Save
os.makedirs(os.path.dirname(args.output), exist_ok=True)
with open(args.output, 'w') as f:
json.dump(final_output, f, indent=2)
print(f"\n\nFinal Average CPR: {avg_cpr:.4f}")
print(f"Final Average CMD: {avg_cmd:.4f}")
print(f"Results saved to {args.output}")
if __name__ == "__main__":
main()