File size: 12,339 Bytes
5b6c556
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339

import numpy as np
import networkx as nx
import argparse
import json
import os
import sys
import logging
from typing import List, Tuple
from pathlib import Path
import math

# Ensure we can import the pipeline
sys.path.append(str(Path(__file__).resolve().parent.parent))

from circuit_analysis.attribution_graphs_olmo import (
    AttributionGraphsPipeline,
    AttributionGraphConfig,
    ANALYSIS_PROMPTS,
    AttributionGraph
)

# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)

def compute_cpr(k_values: List[float], f_values: List[float]) -> float:
    """
    Compute CPR (Integrated Circuit Performance Ratio) using the trapezoidal rule.
    CPR = Integral of f(C_k) dk
    """
    cpr = 0.0
    for i in range(len(k_values) - 1):
        cpr += 0.5 * (f_values[i] + f_values[i+1]) * (k_values[i+1] - k_values[i])
    return cpr

def compute_cmd(k_values: List[float], f_values: List[float]) -> float:
    """
    Compute CMD (Integrated Circuit-Model Distance) using the trapezoidal rule.
    CMD = Integral of |1 - f(C_k)| dk
    """
    cmd = 0.0
    for i in range(len(k_values) - 1):
        y0 = abs(1.0 - f_values[i])
        y1 = abs(1.0 - f_values[i+1])
        cmd += 0.5 * (y0 + y1) * (k_values[i+1] - k_values[i])
    return cmd

def get_active_features_from_graph(graph: nx.DiGraph) -> List[Tuple[int, int]]:
    """
    Extracts the list of feature nodes (as layer_idx, feature_idx tuples) from the graph.
    """
    features = []
    for node in graph.nodes():
        if node.startswith("feat_"):
            parts = node.split('_')
            try:
                # Format: feat_L{layer}_T{token}_F{feature}
                layer_idx = int(parts[1][1:])
                feature_idx = int(parts[3][1:])
                # We only care about unique (layer, feature) pairs for ablation
                features.append((layer_idx, feature_idx))
            except (IndexError, ValueError):
                continue
    return list(set(features))

def calculate_graph_importance(attribution_graph_obj: AttributionGraph, graph: nx.DiGraph) -> List[Tuple[str, float]]:
    """
    Calculates the importance of each feature node in the graph based on edge weights.
    Returns a list of (node_id, importance_score) sorted by importance descending.
    """
    node_importance = {}
    
    # Identify feature nodes
    feature_nodes = [n for n in graph.nodes() if attribution_graph_obj.node_types.get(n) == "feature"]
    
    # Calculate importance as sum of absolute weights of connected edges
    for node in feature_nodes:
        importance = 0.0
        # Outgoing edges
        for _, target in graph.out_edges(node):
            weight = attribution_graph_obj.edge_weights.get((node, target), 0.0)
            importance += abs(weight)
        # Incoming edges? MIB usually focuses on "importance" for the task.
        # Using sum of absolute edge weights is a standard proxy.
        # attribution_graphs_olmo.py prune_graph uses sum of all connected edge weights (in and out).
        for source, _ in graph.in_edges(node):
            weight = attribution_graph_obj.edge_weights.get((source, node), 0.0)
            importance += abs(weight)
            
        node_importance[node] = importance
        
    return sorted(node_importance.items(), key=lambda x: x[1], reverse=True)

def get_edges_count(graph: nx.DiGraph, nodes: List[str]) -> int:
    """
    Returns the number of edges in the subgraph induced by the given nodes 
    (plus edges to output/embedding if we consider them part of the circuit context).
    However, strictly following "fraction of total edges":
    We should count edges where BOTH source and target are in the kept set (including embeddings/output).
    """
    # Assuming embeddings and output are always "kept" or don't count towards the quota 
    # if we only ablate features.
    # But for the metric k = |C|/|N|, we need a consistent definition.
    # Let's define |C| as the number of edges in the subgraph induced by (Selected Features + Embeddings + Output).
    
    nodes_set = set(nodes)
    count = 0
    for u, v in graph.edges():
        if u in nodes_set and v in nodes_set:
            count += 1
    return count

def run_cpr_cmd_analysis(pipeline: AttributionGraphsPipeline, prompt_idx: int):
    """
    Compute CPR and CMD for a given prompt, using:
    
    - Universe: all feature nodes present in the attribution graph
    - Metric m: logit(target) only (no foil)
    - Interventions: ablation of feature sets with intervention_strength=1.0
    """
    prompt = ANALYSIS_PROMPTS[prompt_idx]
    logger.info(f"Analyzing prompt {prompt_idx}: '{prompt}'")
    
    # Build/prune the attribution graph for this prompt
    pipeline.analyze_prompt(prompt)
    full_graph = pipeline.attribution_graph.graph
    
    # Baseline: run once to get logits & feature activations
    baseline_data = pipeline.perturbation_experiments._prepare_inputs(prompt, top_k=1)
    target_token_id = baseline_data['baseline_top_tokens'].indices[0].item()
    baseline_logits = baseline_data['baseline_last_token_logits']
    m_N = baseline_logits[target_token_id].item()
    
    logger.info(
        f"Baseline m(N) = {m_N:.4f} "
        f"(Token: {pipeline.tokenizer.decode([target_token_id])})"
    )
    
    # Universe: all feature nodes in the graph
    universe_features = get_active_features_from_graph(full_graph)
    logger.info(f"Graph Universe size: {len(universe_features)} features")
    
    if not universe_features:
        logger.warning("No features found in graph. Skipping.")
        return None
    
    # Empty circuit: ablate all universe features
    empty_res = pipeline.perturbation_experiments.feature_set_ablation_experiment(
        prompt,
        feature_set=universe_features,
        intervention_strength=1.0,
        target_token_id=target_token_id
    )
    m_empty = empty_res["ablated_logit"]
    logger.info(f"Empty m(Ø) = {m_empty:.4f}")

    if not math.isfinite(m_empty):
        logger.warning(
            f"m_empty is non-finite ({m_empty}) for prompt {prompt_idx}; "
            "skipping CPR/CMD for this prompt."
        )
        return None
    
    # Node importance within the graph
    sorted_nodes = calculate_graph_importance(pipeline.attribution_graph, full_graph)
    
    total_edges = full_graph.number_of_edges()
    k_grid = [0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1.0]
    f_values = []
    actual_k_values = []
    
    # Embeddings/output are always kept
    always_kept_nodes = [n for n in full_graph.nodes() if not n.startswith("feat_")]
    
    logger.info("Computing faithfulness curve...")
    
    for k in k_grid:
        target_edge_count = int(k * total_edges)
        
        current_circuit_nodes = list(always_kept_nodes)
        current_feature_tuples = []
        
        for node, _ in sorted_nodes:
            current_edge_count = get_edges_count(full_graph, current_circuit_nodes)
            if current_edge_count >= target_edge_count and len(current_feature_tuples) > 0:
                break
            
            current_circuit_nodes.append(node)
            parts = node.split("_")
            l = int(parts[1][1:])
            f = int(parts[3][1:])
            current_feature_tuples.append((l, f))
        
        actual_edges = get_edges_count(full_graph, current_circuit_nodes)
        actual_k = actual_edges / total_edges if total_edges > 0 else 0.0
        actual_k_values.append(actual_k)
        
        # Complement = universe \ current features
        current_set = set(current_feature_tuples)
        complement_set = [ft for ft in universe_features if ft not in current_set]
        
        if not complement_set:
            m_Ck = m_N
        else:
            res = pipeline.perturbation_experiments.feature_set_ablation_experiment(
                prompt,
                feature_set=complement_set,
                intervention_strength=1.0,
                target_token_id=target_token_id
            )
            m_Ck = res["ablated_logit"]
        
        if not math.isfinite(m_Ck):
            logger.warning(
                f"Non-finite m_Ck={m_Ck} for k={k:.4f} on prompt {prompt_idx}; "
                "skipping this k point."
            )
            continue

        if abs(m_N - m_empty) < 1e-6:
            f_k = 0.0
        else:
            raw_f = (m_Ck - m_empty) / (m_N - m_empty)
            f_k = max(0.0, min(1.0, raw_f))
        
        f_values.append(f_k)
    
    if not actual_k_values or not f_values:
        logger.warning(f"No valid k-points for prompt {prompt_idx}; skipping.")
        return None
    
    pairs = sorted(zip(actual_k_values, f_values), key=lambda x: x[0])
    sorted_k = [p[0] for p in pairs]
    sorted_f = [p[1] for p in pairs]
    
    if sorted_k[0] > 0.0:
        sorted_k.insert(0, 0.0)
        sorted_f.insert(0, 0.0)
    if sorted_k[-1] < 1.0:
        last_f = sorted_f[-1]
        sorted_k.append(1.0)
        sorted_f.append(last_f)
        
    cpr = compute_cpr(sorted_k, sorted_f)
    cmd = compute_cmd(sorted_k, sorted_f)
    
    logger.info(f"Result: CPR={cpr:.4f}, CMD={cmd:.4f}")
    
    return {
        "prompt": prompt,
        "target_token": pipeline.tokenizer.decode([target_token_id]),
        "m_N": m_N,
        "m_empty": m_empty,
        "curve_k": sorted_k,
        "curve_f": sorted_f,
        "CPR": cpr,
        "CMD": cmd
    }

def main():
    parser = argparse.ArgumentParser()
    parser.add_argument("--output", type=str, default="circuit_analysis/results/cpr_cmd_results.json")
    args = parser.parse_args()
    
    # Initialize Pipeline
    config = AttributionGraphConfig(
        model_path="models/OLMo-2-1124-7B", # Adjust relative path if needed
        n_features_per_layer=512,  # Back to 512 due to memory constraints
        # We want a fairly rich graph to start with, so we can prune it down
        graph_feature_activation_threshold=0.01,
        graph_edge_weight_threshold=0.003, # Lower threshold for more edges (prev: 0.005)
        graph_max_features_per_layer=40, # Increased from 24 (prev: 100 was too slow)
        graph_max_edges_per_node=20,     # Increased from 12 (prev: 50 was too slow)
        # intervention_strength defaults to 5.0 in AttributionGraphConfig, which was working better
        intervention_strength=1.0,
    )
    
    # Check model path
    if not os.path.exists(config.model_path):
        # Try absolute python3 circuit_analysis/calculate_cpr_cmd.pypath or relative to script
        root_path = Path(__file__).resolve().parent.parent
        possible_path = root_path / "models" / "OLMo-2-1124-7B"
        if possible_path.exists():
            config.model_path = str(possible_path)
        else:
            # Try the one in current dir?
            pass
            
    pipeline = AttributionGraphsPipeline(config)
    
    # Load CLT
    clt_path = "circuit_analysis/models/clt_model.pth"
    if not os.path.exists(clt_path):
        # Try full path
        clt_path = str(Path(__file__).resolve().parent / "models" / "clt_model.pth")
        
    if os.path.exists(clt_path):
        pipeline.load_clt(clt_path)
    else:
        logger.error(f"CLT model not found at {clt_path}. Please train it first.")
        return

    results = []
    for i in range(len(ANALYSIS_PROMPTS)):
        try:
            res = run_cpr_cmd_analysis(pipeline, i)
            if res:
                results.append(res)
        except Exception as e:
            logger.error(f"Failed prompt {i}: {e}", exc_info=True)
            
    # Average CPR/CMD
    if results:
        avg_cpr = np.mean([r['CPR'] for r in results])
        avg_cmd = np.mean([r['CMD'] for r in results])
    else:
        avg_cpr = 0.0
        avg_cmd = 0.0
    
    final_output = {
        "results": results,
        "average_CPR": avg_cpr,
        "average_CMD": avg_cmd
    }
    
    # Save
    os.makedirs(os.path.dirname(args.output), exist_ok=True)
    with open(args.output, 'w') as f:
        json.dump(final_output, f, indent=2)
        
    print(f"\n\nFinal Average CPR: {avg_cpr:.4f}")
    print(f"Final Average CMD: {avg_cmd:.4f}")
    print(f"Results saved to {args.output}")

if __name__ == "__main__":
    main()