TeethNet-python / tasks.py
Harsh7817's picture
Refactor for Hugging Face Spaces: Remove Redis/Celery, add standalone mode
508dbb9
import os
from pathlib import Path
import traceback
import json
import time
import sys
import numpy as np
import cv2
import open3d as o3d
import torch
import trimesh
from transformers import AutoImageProcessor, AutoModelForDepthEstimation
# Pipeline settings
DEPTH_CHECKPOINT = os.environ.get("DEPTH_CHECKPOINT", "LiheYoung/depth-anything-large-hf") # Default to HF Hub model if local not found
USE_GPU = int(os.environ.get("USE_GPU", "0")) # Default to CPU for HF Spaces
POISSON_DEPTH = int(os.environ.get("POISSON_DEPTH", "9"))
OUTLIER_NEIGHBORS = int(os.environ.get("OUTLIER_NEIGHBORS", "15"))
OUTLIER_STD_RATIO = float(os.environ.get("OUTLIER_STD_RATIO", "1.0"))
ORTHO_SCALE_FACTOR = float(os.environ.get("ORTHO_SCALE_FACTOR", "255"))
INFERENCE_RESIZE = int(os.environ.get("INFERENCE_RESIZE", "0"))
RESULT_PREFIX = os.environ.get("RESULT_PREFIX", "")
try:
torch.set_num_threads(max(1, (os.cpu_count() or 2) // 2))
except Exception:
pass
_model = None
_processor = None
_device = "cpu"
def log(msg):
print(msg, flush=True)
sys.stdout.flush()
def load_model():
global _model, _processor, _device
if _model is None:
log(f"Loading model: {DEPTH_CHECKPOINT}")
_processor = AutoImageProcessor.from_pretrained(DEPTH_CHECKPOINT)
_model = AutoModelForDepthEstimation.from_pretrained(DEPTH_CHECKPOINT)
if USE_GPU and torch.cuda.is_available():
_device = "cuda"
_model = _model.to("cuda")
else:
_device = "cpu"
_model.eval()
return _model, _processor, _device
def normalize_depth_uint8(depth_np: np.ndarray) -> np.ndarray:
m = np.max(depth_np)
if m <= 0:
return np.zeros_like(depth_np, dtype=np.uint8)
return (depth_np * 255.0 / m).astype("uint8")
def build_orthographic_point_cloud(depth_u8: np.ndarray, color_rgb: np.ndarray) -> o3d.geometry.PointCloud:
depth_map = depth_u8.astype(np.float32)
h, w = depth_map.shape
y, x = np.meshgrid(np.arange(h), np.arange(w), indexing='ij')
z = (depth_map / ORTHO_SCALE_FACTOR) * (h / 2.0)
points = np.stack((x, y, z), axis=-1).reshape(-1, 3)
mask = points[:, 2] != 0
points = points[mask]
pcd = o3d.geometry.PointCloud()
pcd.points = o3d.utility.Vector3dVector(points)
colors = color_rgb.reshape(-1, 3)[mask] / 255.0
pcd.colors = o3d.utility.Vector3dVector(colors)
return pcd
def process_image_task(image_path: str, result_dir: str, job_id: str, status_callback):
start = time.time()
try:
status_callback(job_id, "RUNNING", "Loading model")
model, processor, device = load_model()
log(f"[{job_id}] Model loaded on {device}")
img_bgr = cv2.imread(image_path)
if img_bgr is None:
raise RuntimeError("Failed to read image")
img_rgb = cv2.cvtColor(img_bgr, cv2.COLOR_BGR2RGB)
orig_h, orig_w = img_rgb.shape[:2]
# Optional resize (not used in your notebook; keep 0 for fidelity)
if INFERENCE_RESIZE and INFERENCE_RESIZE > 0:
scale = INFERENCE_RESIZE / max(orig_h, orig_w)
new_w = int(orig_w * scale)
new_h = int(orig_h * scale)
img_proc = cv2.resize(img_rgb, (new_w, new_h), interpolation=cv2.INTER_AREA)
else:
img_proc = img_rgb
status_callback(job_id, "RUNNING", "Running depth inference")
depth_inputs = processor(images=img_proc, return_tensors="pt").to(device)
with torch.no_grad():
outputs = model(**depth_inputs)
depth = outputs.predicted_depth.squeeze().detach().cpu().numpy()
# Match notebook: use depth resolution, resize color to depth size
dh, dw = depth.shape
color_resized = cv2.resize(img_proc, (dw, dh), interpolation=cv2.INTER_LINEAR)
depth_u8 = normalize_depth_uint8(depth)
status_callback(job_id, "RUNNING", "Building orthographic point cloud")
pcd = build_orthographic_point_cloud(depth_u8, color_resized)
# Outlier removal (nb=15, std_ratio=1.0)
try:
cl, ind = pcd.remove_statistical_outlier(nb_neighbors=OUTLIER_NEIGHBORS,
std_ratio=OUTLIER_STD_RATIO)
pcd = pcd.select_by_index(ind)
except Exception as e:
log(f"[{job_id}] Outlier removal warning: {e}")
# Normals (your notebook: estimate_normals + orient_normals_to_align_with_direction)
if len(pcd.points) >= 10:
try:
pcd.estimate_normals()
pcd.orient_normals_to_align_with_direction()
except Exception as e:
log(f"[{job_id}] Normal estimation warning: {e}")
num_pts = np.asarray(pcd.points).shape[0]
log(f"[{job_id}] Point cloud size after cleanup: {num_pts}")
if num_pts == 0:
raise RuntimeError("Empty point cloud after cleanup")
status_callback(job_id, "RUNNING", f"Poisson reconstruction depth={POISSON_DEPTH}")
mesh, densities = o3d.geometry.TriangleMesh.create_from_point_cloud_poisson(
pcd, depth=POISSON_DEPTH
)
# Compute normals
try:
mesh.compute_vertex_normals()
except Exception:
pass
mesh.compute_triangle_normals()
num_vertices = np.asarray(mesh.vertices).shape[0]
num_tris = np.asarray(mesh.triangles).shape[0]
log(f"[{job_id}] Mesh stats vertices={num_vertices} triangles={num_tris}")
if num_tris == 0:
raise RuntimeError("Poisson produced empty mesh")
Path(result_dir).mkdir(parents=True, exist_ok=True)
stl_path = Path(result_dir) / f"{RESULT_PREFIX}{job_id}.stl"
status_callback(job_id, "RUNNING", "Exporting STL")
tm = trimesh.Trimesh(vertices=np.asarray(mesh.vertices),
faces=np.asarray(mesh.triangles),
process=True)
tm.export(str(stl_path), file_type="stl")
total = time.time() - start
status_callback(job_id, "SUCCESS", f"Done in {total:.2f}s", str(stl_path))
log(f"[{job_id}] SUCCESS total={total:.2f}s STL={stl_path}")
return {
"status": "success",
"stl": str(stl_path),
"mesh_stats": {"vertices": int(num_vertices), "triangles": int(num_tris)}
}
except Exception as e:
traceback.print_exc()
status_callback(job_id, "FAILURE", str(e))
log(f"[{job_id}] FAILURE: {e}")
raise