Spaces:
Running
Running
File size: 6,540 Bytes
4fcc94b 508dbb9 4fcc94b 508dbb9 4fcc94b 508dbb9 4fcc94b 508dbb9 4fcc94b 508dbb9 4fcc94b 508dbb9 4fcc94b 508dbb9 4fcc94b 508dbb9 4fcc94b 508dbb9 4fcc94b 508dbb9 4fcc94b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 |
import os
from pathlib import Path
import traceback
import json
import time
import sys
import numpy as np
import cv2
import open3d as o3d
import torch
import trimesh
from transformers import AutoImageProcessor, AutoModelForDepthEstimation
# Pipeline settings
DEPTH_CHECKPOINT = os.environ.get("DEPTH_CHECKPOINT", "LiheYoung/depth-anything-large-hf") # Default to HF Hub model if local not found
USE_GPU = int(os.environ.get("USE_GPU", "0")) # Default to CPU for HF Spaces
POISSON_DEPTH = int(os.environ.get("POISSON_DEPTH", "9"))
OUTLIER_NEIGHBORS = int(os.environ.get("OUTLIER_NEIGHBORS", "15"))
OUTLIER_STD_RATIO = float(os.environ.get("OUTLIER_STD_RATIO", "1.0"))
ORTHO_SCALE_FACTOR = float(os.environ.get("ORTHO_SCALE_FACTOR", "255"))
INFERENCE_RESIZE = int(os.environ.get("INFERENCE_RESIZE", "0"))
RESULT_PREFIX = os.environ.get("RESULT_PREFIX", "")
try:
torch.set_num_threads(max(1, (os.cpu_count() or 2) // 2))
except Exception:
pass
_model = None
_processor = None
_device = "cpu"
def log(msg):
print(msg, flush=True)
sys.stdout.flush()
def load_model():
global _model, _processor, _device
if _model is None:
log(f"Loading model: {DEPTH_CHECKPOINT}")
_processor = AutoImageProcessor.from_pretrained(DEPTH_CHECKPOINT)
_model = AutoModelForDepthEstimation.from_pretrained(DEPTH_CHECKPOINT)
if USE_GPU and torch.cuda.is_available():
_device = "cuda"
_model = _model.to("cuda")
else:
_device = "cpu"
_model.eval()
return _model, _processor, _device
def normalize_depth_uint8(depth_np: np.ndarray) -> np.ndarray:
m = np.max(depth_np)
if m <= 0:
return np.zeros_like(depth_np, dtype=np.uint8)
return (depth_np * 255.0 / m).astype("uint8")
def build_orthographic_point_cloud(depth_u8: np.ndarray, color_rgb: np.ndarray) -> o3d.geometry.PointCloud:
depth_map = depth_u8.astype(np.float32)
h, w = depth_map.shape
y, x = np.meshgrid(np.arange(h), np.arange(w), indexing='ij')
z = (depth_map / ORTHO_SCALE_FACTOR) * (h / 2.0)
points = np.stack((x, y, z), axis=-1).reshape(-1, 3)
mask = points[:, 2] != 0
points = points[mask]
pcd = o3d.geometry.PointCloud()
pcd.points = o3d.utility.Vector3dVector(points)
colors = color_rgb.reshape(-1, 3)[mask] / 255.0
pcd.colors = o3d.utility.Vector3dVector(colors)
return pcd
def process_image_task(image_path: str, result_dir: str, job_id: str, status_callback):
start = time.time()
try:
status_callback(job_id, "RUNNING", "Loading model")
model, processor, device = load_model()
log(f"[{job_id}] Model loaded on {device}")
img_bgr = cv2.imread(image_path)
if img_bgr is None:
raise RuntimeError("Failed to read image")
img_rgb = cv2.cvtColor(img_bgr, cv2.COLOR_BGR2RGB)
orig_h, orig_w = img_rgb.shape[:2]
# Optional resize (not used in your notebook; keep 0 for fidelity)
if INFERENCE_RESIZE and INFERENCE_RESIZE > 0:
scale = INFERENCE_RESIZE / max(orig_h, orig_w)
new_w = int(orig_w * scale)
new_h = int(orig_h * scale)
img_proc = cv2.resize(img_rgb, (new_w, new_h), interpolation=cv2.INTER_AREA)
else:
img_proc = img_rgb
status_callback(job_id, "RUNNING", "Running depth inference")
depth_inputs = processor(images=img_proc, return_tensors="pt").to(device)
with torch.no_grad():
outputs = model(**depth_inputs)
depth = outputs.predicted_depth.squeeze().detach().cpu().numpy()
# Match notebook: use depth resolution, resize color to depth size
dh, dw = depth.shape
color_resized = cv2.resize(img_proc, (dw, dh), interpolation=cv2.INTER_LINEAR)
depth_u8 = normalize_depth_uint8(depth)
status_callback(job_id, "RUNNING", "Building orthographic point cloud")
pcd = build_orthographic_point_cloud(depth_u8, color_resized)
# Outlier removal (nb=15, std_ratio=1.0)
try:
cl, ind = pcd.remove_statistical_outlier(nb_neighbors=OUTLIER_NEIGHBORS,
std_ratio=OUTLIER_STD_RATIO)
pcd = pcd.select_by_index(ind)
except Exception as e:
log(f"[{job_id}] Outlier removal warning: {e}")
# Normals (your notebook: estimate_normals + orient_normals_to_align_with_direction)
if len(pcd.points) >= 10:
try:
pcd.estimate_normals()
pcd.orient_normals_to_align_with_direction()
except Exception as e:
log(f"[{job_id}] Normal estimation warning: {e}")
num_pts = np.asarray(pcd.points).shape[0]
log(f"[{job_id}] Point cloud size after cleanup: {num_pts}")
if num_pts == 0:
raise RuntimeError("Empty point cloud after cleanup")
status_callback(job_id, "RUNNING", f"Poisson reconstruction depth={POISSON_DEPTH}")
mesh, densities = o3d.geometry.TriangleMesh.create_from_point_cloud_poisson(
pcd, depth=POISSON_DEPTH
)
# Compute normals
try:
mesh.compute_vertex_normals()
except Exception:
pass
mesh.compute_triangle_normals()
num_vertices = np.asarray(mesh.vertices).shape[0]
num_tris = np.asarray(mesh.triangles).shape[0]
log(f"[{job_id}] Mesh stats vertices={num_vertices} triangles={num_tris}")
if num_tris == 0:
raise RuntimeError("Poisson produced empty mesh")
Path(result_dir).mkdir(parents=True, exist_ok=True)
stl_path = Path(result_dir) / f"{RESULT_PREFIX}{job_id}.stl"
status_callback(job_id, "RUNNING", "Exporting STL")
tm = trimesh.Trimesh(vertices=np.asarray(mesh.vertices),
faces=np.asarray(mesh.triangles),
process=True)
tm.export(str(stl_path), file_type="stl")
total = time.time() - start
status_callback(job_id, "SUCCESS", f"Done in {total:.2f}s", str(stl_path))
log(f"[{job_id}] SUCCESS total={total:.2f}s STL={stl_path}")
return {
"status": "success",
"stl": str(stl_path),
"mesh_stats": {"vertices": int(num_vertices), "triangles": int(num_tris)}
}
except Exception as e:
traceback.print_exc()
status_callback(job_id, "FAILURE", str(e))
log(f"[{job_id}] FAILURE: {e}")
raise |