|
|
import gradio as gr |
|
|
import torch |
|
|
import torch.nn as nn |
|
|
import numpy as np |
|
|
from PIL import Image |
|
|
import math |
|
|
from einops import rearrange |
|
|
import os |
|
|
import glob |
|
|
import base64 |
|
|
from io import BytesIO |
|
|
|
|
|
|
|
|
def to_2tuple(x): |
|
|
"""Convert input to tuple of length 2.""" |
|
|
if isinstance(x, (tuple, list)): |
|
|
return tuple(x) |
|
|
return (x, x) |
|
|
|
|
|
|
|
|
def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.): |
|
|
"""Truncated normal initialization.""" |
|
|
def norm_cdf(x): |
|
|
return (1. + math.erf(x / math.sqrt(2.))) / 2. |
|
|
|
|
|
with torch.no_grad(): |
|
|
l = norm_cdf((a - mean) / std) |
|
|
u = norm_cdf((b - mean) / std) |
|
|
tensor.uniform_(2 * l - 1, 2 * u - 1) |
|
|
tensor.erfinv_() |
|
|
tensor.mul_(std * math.sqrt(2.)) |
|
|
tensor.add_(mean) |
|
|
tensor.clamp_(min=a, max=b) |
|
|
return tensor |
|
|
|
|
|
|
|
|
def drop_path(x, drop_prob: float = 0., training: bool = False): |
|
|
if drop_prob == 0. or not training: |
|
|
return x |
|
|
keep_prob = 1 - drop_prob |
|
|
shape = (x.shape[0], ) + (1, ) * (x.ndim - 1) |
|
|
random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device) |
|
|
random_tensor.floor_() |
|
|
output = x.div(keep_prob) * random_tensor |
|
|
return output |
|
|
|
|
|
|
|
|
class DropPath(nn.Module): |
|
|
def __init__(self, drop_prob=None): |
|
|
super(DropPath, self).__init__() |
|
|
self.drop_prob = drop_prob |
|
|
|
|
|
def forward(self, x): |
|
|
return drop_path(x, self.drop_prob, self.training) |
|
|
|
|
|
|
|
|
class ChannelAttention(nn.Module): |
|
|
def __init__(self, num_feat, squeeze_factor=16): |
|
|
super(ChannelAttention, self).__init__() |
|
|
self.attention = nn.Sequential( |
|
|
nn.AdaptiveAvgPool2d(1), |
|
|
nn.Conv2d(num_feat, num_feat // squeeze_factor, 1, padding=0), |
|
|
nn.ReLU(inplace=True), |
|
|
nn.Conv2d(num_feat // squeeze_factor, num_feat, 1, padding=0), |
|
|
nn.Sigmoid()) |
|
|
|
|
|
def forward(self, x): |
|
|
y = self.attention(x) |
|
|
return x * y |
|
|
|
|
|
|
|
|
class CAB(nn.Module): |
|
|
def __init__(self, num_feat, compress_ratio=3, squeeze_factor=30): |
|
|
super(CAB, self).__init__() |
|
|
self.cab = nn.Sequential( |
|
|
nn.Conv2d(num_feat, num_feat // compress_ratio, 3, 1, 1), |
|
|
nn.GELU(), |
|
|
nn.Conv2d(num_feat // compress_ratio, num_feat, 3, 1, 1), |
|
|
ChannelAttention(num_feat, squeeze_factor) |
|
|
) |
|
|
|
|
|
def forward(self, x): |
|
|
return self.cab(x) |
|
|
|
|
|
|
|
|
class Mlp(nn.Module): |
|
|
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): |
|
|
super().__init__() |
|
|
out_features = out_features or in_features |
|
|
hidden_features = hidden_features or in_features |
|
|
self.fc1 = nn.Linear(in_features, hidden_features) |
|
|
self.act = act_layer() |
|
|
self.fc2 = nn.Linear(hidden_features, out_features) |
|
|
self.drop = nn.Dropout(drop) |
|
|
|
|
|
def forward(self, x): |
|
|
x = self.fc1(x) |
|
|
x = self.act(x) |
|
|
x = self.drop(x) |
|
|
x = self.fc2(x) |
|
|
x = self.drop(x) |
|
|
return x |
|
|
|
|
|
|
|
|
def window_partition(x, window_size): |
|
|
b, h, w, c = x.shape |
|
|
x = x.view(b, h // window_size, window_size, w // window_size, window_size, c) |
|
|
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, c) |
|
|
return windows |
|
|
|
|
|
|
|
|
def window_reverse(windows, window_size, h, w): |
|
|
b = int(windows.shape[0] / (h * w / window_size / window_size)) |
|
|
x = windows.view(b, h // window_size, w // window_size, window_size, window_size, -1) |
|
|
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(b, h, w, -1) |
|
|
return x |
|
|
|
|
|
|
|
|
class WindowAttention(nn.Module): |
|
|
def __init__(self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.): |
|
|
super().__init__() |
|
|
self.dim = dim |
|
|
self.window_size = window_size |
|
|
self.num_heads = num_heads |
|
|
head_dim = dim // num_heads |
|
|
self.scale = qk_scale or head_dim**-0.5 |
|
|
|
|
|
self.relative_position_bias_table = nn.Parameter( |
|
|
torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)) |
|
|
|
|
|
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) |
|
|
self.attn_drop = nn.Dropout(attn_drop) |
|
|
self.proj = nn.Linear(dim, dim) |
|
|
self.proj_drop = nn.Dropout(proj_drop) |
|
|
|
|
|
trunc_normal_(self.relative_position_bias_table, std=.02) |
|
|
self.softmax = nn.Softmax(dim=-1) |
|
|
|
|
|
def forward(self, x, rpi, mask=None): |
|
|
b_, n, c = x.shape |
|
|
qkv = self.qkv(x).reshape(b_, n, 3, self.num_heads, c // self.num_heads).permute(2, 0, 3, 1, 4) |
|
|
q, k, v = qkv[0], qkv[1], qkv[2] |
|
|
|
|
|
q = q * self.scale |
|
|
attn = (q @ k.transpose(-2, -1)) |
|
|
|
|
|
relative_position_bias = self.relative_position_bias_table[rpi.view(-1)].view( |
|
|
self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) |
|
|
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() |
|
|
attn = attn + relative_position_bias.unsqueeze(0) |
|
|
|
|
|
if mask is not None: |
|
|
nw = mask.shape[0] |
|
|
attn = attn.view(b_ // nw, nw, self.num_heads, n, n) + mask.unsqueeze(1).unsqueeze(0) |
|
|
attn = attn.view(-1, self.num_heads, n, n) |
|
|
attn = self.softmax(attn) |
|
|
else: |
|
|
attn = self.softmax(attn) |
|
|
|
|
|
attn = self.attn_drop(attn) |
|
|
|
|
|
x = (attn @ v).transpose(1, 2).reshape(b_, n, c) |
|
|
x = self.proj(x) |
|
|
x = self.proj_drop(x) |
|
|
return x |
|
|
|
|
|
|
|
|
class HAB(nn.Module): |
|
|
def __init__(self, dim, input_resolution, num_heads, window_size=7, shift_size=0, |
|
|
compress_ratio=3, squeeze_factor=30, conv_scale=0.01, mlp_ratio=4., |
|
|
qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0., |
|
|
act_layer=nn.GELU, norm_layer=nn.LayerNorm): |
|
|
super().__init__() |
|
|
self.dim = dim |
|
|
self.input_resolution = input_resolution |
|
|
self.num_heads = num_heads |
|
|
self.window_size = window_size |
|
|
self.shift_size = shift_size |
|
|
self.mlp_ratio = mlp_ratio |
|
|
if min(self.input_resolution) <= self.window_size: |
|
|
self.shift_size = 0 |
|
|
self.window_size = min(self.input_resolution) |
|
|
assert 0 <= self.shift_size < self.window_size, 'shift_size must in 0-window_size' |
|
|
|
|
|
self.norm1 = norm_layer(dim) |
|
|
self.attn = WindowAttention( |
|
|
dim, window_size=to_2tuple(self.window_size), num_heads=num_heads, |
|
|
qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop) |
|
|
|
|
|
self.conv_scale = conv_scale |
|
|
self.conv_block = CAB(num_feat=dim, compress_ratio=compress_ratio, squeeze_factor=squeeze_factor) |
|
|
|
|
|
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() |
|
|
self.norm2 = norm_layer(dim) |
|
|
mlp_hidden_dim = int(dim * mlp_ratio) |
|
|
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) |
|
|
|
|
|
def forward(self, x, x_size, rpi_sa, attn_mask): |
|
|
h, w = x_size |
|
|
b, _, c = x.shape |
|
|
|
|
|
shortcut = x |
|
|
x = self.norm1(x) |
|
|
x = x.view(b, h, w, c) |
|
|
|
|
|
|
|
|
conv_x = self.conv_block(x.permute(0, 3, 1, 2)) |
|
|
conv_x = conv_x.permute(0, 2, 3, 1).contiguous().view(b, h * w, c) |
|
|
|
|
|
|
|
|
if self.shift_size > 0: |
|
|
shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2)) |
|
|
attn_mask = attn_mask |
|
|
else: |
|
|
shifted_x = x |
|
|
attn_mask = None |
|
|
|
|
|
|
|
|
x_windows = window_partition(shifted_x, self.window_size) |
|
|
x_windows = x_windows.view(-1, self.window_size * self.window_size, c) |
|
|
|
|
|
|
|
|
attn_windows = self.attn(x_windows, rpi=rpi_sa, mask=attn_mask) |
|
|
|
|
|
|
|
|
attn_windows = attn_windows.view(-1, self.window_size, self.window_size, c) |
|
|
shifted_x = window_reverse(attn_windows, self.window_size, h, w) |
|
|
|
|
|
|
|
|
if self.shift_size > 0: |
|
|
attn_x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2)) |
|
|
else: |
|
|
attn_x = shifted_x |
|
|
attn_x = attn_x.view(b, h * w, c) |
|
|
|
|
|
|
|
|
x = shortcut + self.drop_path(attn_x) + conv_x * self.conv_scale |
|
|
x = x + self.drop_path(self.mlp(self.norm2(x))) |
|
|
|
|
|
return x |
|
|
|
|
|
|
|
|
class OCAB(nn.Module): |
|
|
def __init__(self, dim, input_resolution, window_size, overlap_ratio, num_heads, |
|
|
qkv_bias=True, qk_scale=None, mlp_ratio=2, norm_layer=nn.LayerNorm): |
|
|
super().__init__() |
|
|
self.dim = dim |
|
|
self.input_resolution = input_resolution |
|
|
self.window_size = window_size |
|
|
self.num_heads = num_heads |
|
|
head_dim = dim // num_heads |
|
|
self.scale = qk_scale or head_dim**-0.5 |
|
|
self.overlap_win_size = int(window_size * overlap_ratio) + window_size |
|
|
|
|
|
self.norm1 = norm_layer(dim) |
|
|
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) |
|
|
self.unfold = nn.Unfold(kernel_size=(self.overlap_win_size, self.overlap_win_size), |
|
|
stride=window_size, padding=(self.overlap_win_size-window_size)//2) |
|
|
|
|
|
self.relative_position_bias_table = nn.Parameter( |
|
|
torch.zeros((window_size + self.overlap_win_size - 1) * (window_size + self.overlap_win_size - 1), num_heads)) |
|
|
|
|
|
trunc_normal_(self.relative_position_bias_table, std=.02) |
|
|
self.softmax = nn.Softmax(dim=-1) |
|
|
|
|
|
self.proj = nn.Linear(dim,dim) |
|
|
|
|
|
self.norm2 = norm_layer(dim) |
|
|
mlp_hidden_dim = int(dim * mlp_ratio) |
|
|
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=nn.GELU) |
|
|
|
|
|
def forward(self, x, x_size, rpi): |
|
|
h, w = x_size |
|
|
b, _, c = x.shape |
|
|
|
|
|
shortcut = x |
|
|
x = self.norm1(x) |
|
|
x = x.view(b, h, w, c) |
|
|
|
|
|
qkv = self.qkv(x).reshape(b, h, w, 3, c).permute(3, 0, 4, 1, 2) |
|
|
q = qkv[0].permute(0, 2, 3, 1) |
|
|
kv = torch.cat((qkv[1], qkv[2]), dim=1) |
|
|
|
|
|
|
|
|
q_windows = window_partition(q, self.window_size) |
|
|
q_windows = q_windows.view(-1, self.window_size * self.window_size, c) |
|
|
|
|
|
kv_windows = self.unfold(kv) |
|
|
kv_windows = rearrange(kv_windows, 'b (nc ch owh oww) nw -> nc (b nw) (owh oww) ch', |
|
|
nc=2, ch=c, owh=self.overlap_win_size, oww=self.overlap_win_size).contiguous() |
|
|
k_windows, v_windows = kv_windows[0], kv_windows[1] |
|
|
|
|
|
b_, nq, _ = q_windows.shape |
|
|
_, n, _ = k_windows.shape |
|
|
d = self.dim // self.num_heads |
|
|
q = q_windows.reshape(b_, nq, self.num_heads, d).permute(0, 2, 1, 3) |
|
|
k = k_windows.reshape(b_, n, self.num_heads, d).permute(0, 2, 1, 3) |
|
|
v = v_windows.reshape(b_, n, self.num_heads, d).permute(0, 2, 1, 3) |
|
|
|
|
|
q = q * self.scale |
|
|
attn = (q @ k.transpose(-2, -1)) |
|
|
|
|
|
relative_position_bias = self.relative_position_bias_table[rpi.view(-1)].view( |
|
|
self.window_size * self.window_size, self.overlap_win_size * self.overlap_win_size, -1) |
|
|
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() |
|
|
attn = attn + relative_position_bias.unsqueeze(0) |
|
|
|
|
|
attn = self.softmax(attn) |
|
|
attn_windows = (attn @ v).transpose(1, 2).reshape(b_, nq, self.dim) |
|
|
|
|
|
|
|
|
attn_windows = attn_windows.view(-1, self.window_size, self.window_size, self.dim) |
|
|
x = window_reverse(attn_windows, self.window_size, h, w) |
|
|
x = x.view(b, h * w, self.dim) |
|
|
|
|
|
x = self.proj(x) + shortcut |
|
|
x = x + self.mlp(self.norm2(x)) |
|
|
return x |
|
|
|
|
|
|
|
|
class AttenBlocks(nn.Module): |
|
|
def __init__(self, dim, input_resolution, depth, num_heads, window_size, compress_ratio, |
|
|
squeeze_factor, conv_scale, overlap_ratio, mlp_ratio=4., qkv_bias=True, qk_scale=None, |
|
|
drop=0., attn_drop=0., drop_path=0., norm_layer=nn.LayerNorm, downsample=None, |
|
|
use_checkpoint=False): |
|
|
super().__init__() |
|
|
self.dim = dim |
|
|
self.input_resolution = input_resolution |
|
|
self.depth = depth |
|
|
self.use_checkpoint = use_checkpoint |
|
|
|
|
|
|
|
|
self.blocks = nn.ModuleList([ |
|
|
HAB(dim=dim, input_resolution=input_resolution, num_heads=num_heads, window_size=window_size, |
|
|
shift_size=0 if (i % 2 == 0) else window_size // 2, compress_ratio=compress_ratio, |
|
|
squeeze_factor=squeeze_factor, conv_scale=conv_scale, mlp_ratio=mlp_ratio, |
|
|
qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop, attn_drop=attn_drop, |
|
|
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path, |
|
|
norm_layer=norm_layer) for i in range(depth) |
|
|
]) |
|
|
|
|
|
|
|
|
self.overlap_attn = OCAB(dim=dim, input_resolution=input_resolution, window_size=window_size, |
|
|
overlap_ratio=overlap_ratio, num_heads=num_heads, qkv_bias=qkv_bias, |
|
|
qk_scale=qk_scale, mlp_ratio=mlp_ratio, norm_layer=norm_layer) |
|
|
|
|
|
|
|
|
if downsample is not None: |
|
|
self.downsample = downsample(input_resolution, dim=dim, norm_layer=norm_layer) |
|
|
else: |
|
|
self.downsample = None |
|
|
|
|
|
def forward(self, x, x_size, params): |
|
|
for blk in self.blocks: |
|
|
x = blk(x, x_size, params['rpi_sa'], params['attn_mask']) |
|
|
|
|
|
x = self.overlap_attn(x, x_size, params['rpi_oca']) |
|
|
|
|
|
if self.downsample is not None: |
|
|
x = self.downsample(x) |
|
|
return x |
|
|
|
|
|
|
|
|
class RHAG(nn.Module): |
|
|
def __init__(self, dim, input_resolution, depth, num_heads, window_size, compress_ratio, |
|
|
squeeze_factor, conv_scale, overlap_ratio, mlp_ratio=4., qkv_bias=True, qk_scale=None, |
|
|
drop=0., attn_drop=0., drop_path=0., norm_layer=nn.LayerNorm, downsample=None, |
|
|
use_checkpoint=False, img_size=224, patch_size=4, resi_connection='1conv'): |
|
|
super(RHAG, self).__init__() |
|
|
|
|
|
self.dim = dim |
|
|
self.input_resolution = input_resolution |
|
|
|
|
|
self.residual_group = AttenBlocks( |
|
|
dim=dim, input_resolution=input_resolution, depth=depth, num_heads=num_heads, |
|
|
window_size=window_size, compress_ratio=compress_ratio, squeeze_factor=squeeze_factor, |
|
|
conv_scale=conv_scale, overlap_ratio=overlap_ratio, mlp_ratio=mlp_ratio, |
|
|
qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop, attn_drop=attn_drop, |
|
|
drop_path=drop_path, norm_layer=norm_layer, downsample=downsample, |
|
|
use_checkpoint=use_checkpoint) |
|
|
|
|
|
if resi_connection == '1conv': |
|
|
self.conv = nn.Conv2d(dim, dim, 3, 1, 1) |
|
|
elif resi_connection == 'identity': |
|
|
self.conv = nn.Identity() |
|
|
|
|
|
self.patch_embed = PatchEmbed( |
|
|
img_size=img_size, patch_size=patch_size, in_chans=0, embed_dim=dim, norm_layer=None) |
|
|
|
|
|
self.patch_unembed = PatchUnEmbed( |
|
|
img_size=img_size, patch_size=patch_size, in_chans=0, embed_dim=dim, norm_layer=None) |
|
|
|
|
|
def forward(self, x, x_size, params): |
|
|
return self.patch_embed(self.conv(self.patch_unembed(self.residual_group(x, x_size, params), x_size))) + x |
|
|
|
|
|
|
|
|
class PatchEmbed(nn.Module): |
|
|
def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None): |
|
|
super().__init__() |
|
|
img_size = to_2tuple(img_size) |
|
|
patch_size = to_2tuple(patch_size) |
|
|
patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]] |
|
|
self.img_size = img_size |
|
|
self.patch_size = patch_size |
|
|
self.patches_resolution = patches_resolution |
|
|
self.num_patches = patches_resolution[0] * patches_resolution[1] |
|
|
|
|
|
self.in_chans = in_chans |
|
|
self.embed_dim = embed_dim |
|
|
|
|
|
if norm_layer is not None: |
|
|
self.norm = norm_layer(embed_dim) |
|
|
else: |
|
|
self.norm = None |
|
|
|
|
|
def forward(self, x): |
|
|
x = x.flatten(2).transpose(1, 2) |
|
|
if self.norm is not None: |
|
|
x = self.norm(x) |
|
|
return x |
|
|
|
|
|
|
|
|
class PatchUnEmbed(nn.Module): |
|
|
def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None): |
|
|
super().__init__() |
|
|
img_size = to_2tuple(img_size) |
|
|
patch_size = to_2tuple(patch_size) |
|
|
patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]] |
|
|
self.img_size = img_size |
|
|
self.patch_size = patch_size |
|
|
self.patches_resolution = patches_resolution |
|
|
self.num_patches = patches_resolution[0] * patches_resolution[1] |
|
|
|
|
|
self.in_chans = in_chans |
|
|
self.embed_dim = embed_dim |
|
|
|
|
|
def forward(self, x, x_size): |
|
|
x = x.transpose(1, 2).contiguous().view(x.shape[0], self.embed_dim, x_size[0], x_size[1]) |
|
|
return x |
|
|
|
|
|
|
|
|
class Upsample(nn.Sequential): |
|
|
def __init__(self, scale, num_feat): |
|
|
m = [] |
|
|
if (scale & (scale - 1)) == 0: |
|
|
for _ in range(int(math.log(scale, 2))): |
|
|
m.append(nn.Conv2d(num_feat, 4 * num_feat, 3, 1, 1)) |
|
|
m.append(nn.PixelShuffle(2)) |
|
|
elif scale == 3: |
|
|
m.append(nn.Conv2d(num_feat, 9 * num_feat, 3, 1, 1)) |
|
|
m.append(nn.PixelShuffle(3)) |
|
|
else: |
|
|
raise ValueError(f'scale {scale} is not supported. Supported scales: 2^n and 3.') |
|
|
super(Upsample, self).__init__(*m) |
|
|
|
|
|
|
|
|
class HAT(nn.Module): |
|
|
def __init__(self, img_size=64, patch_size=1, in_chans=3, embed_dim=96, depths=(6, 6, 6, 6), |
|
|
num_heads=(6, 6, 6, 6), window_size=7, compress_ratio=3, squeeze_factor=30, |
|
|
conv_scale=0.01, overlap_ratio=0.5, mlp_ratio=4., qkv_bias=True, qk_scale=None, |
|
|
drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1, norm_layer=nn.LayerNorm, |
|
|
ape=False, patch_norm=True, use_checkpoint=False, upscale=2, img_range=1., |
|
|
upsampler='', resi_connection='1conv', **kwargs): |
|
|
super(HAT, self).__init__() |
|
|
|
|
|
self.window_size = window_size |
|
|
self.shift_size = window_size // 2 |
|
|
self.overlap_ratio = overlap_ratio |
|
|
|
|
|
num_in_ch = in_chans |
|
|
num_out_ch = in_chans |
|
|
num_feat = 64 |
|
|
self.img_range = img_range |
|
|
if in_chans == 3: |
|
|
rgb_mean = (0.4488, 0.4371, 0.4040) |
|
|
self.mean = torch.Tensor(rgb_mean).view(1, 3, 1, 1) |
|
|
else: |
|
|
self.mean = torch.zeros(1, 1, 1, 1) |
|
|
self.upscale = upscale |
|
|
self.upsampler = upsampler |
|
|
|
|
|
|
|
|
relative_position_index_SA = self.calculate_rpi_sa() |
|
|
relative_position_index_OCA = self.calculate_rpi_oca() |
|
|
self.register_buffer('relative_position_index_SA', relative_position_index_SA) |
|
|
self.register_buffer('relative_position_index_OCA', relative_position_index_OCA) |
|
|
|
|
|
|
|
|
self.conv_first = nn.Conv2d(num_in_ch, embed_dim, 3, 1, 1) |
|
|
|
|
|
|
|
|
self.num_layers = len(depths) |
|
|
self.embed_dim = embed_dim |
|
|
self.ape = ape |
|
|
self.patch_norm = patch_norm |
|
|
self.num_features = embed_dim |
|
|
self.mlp_ratio = mlp_ratio |
|
|
|
|
|
|
|
|
self.patch_embed = PatchEmbed( |
|
|
img_size=img_size, patch_size=patch_size, in_chans=embed_dim, embed_dim=embed_dim, |
|
|
norm_layer=norm_layer if self.patch_norm else None) |
|
|
num_patches = self.patch_embed.num_patches |
|
|
patches_resolution = self.patch_embed.patches_resolution |
|
|
self.patches_resolution = patches_resolution |
|
|
|
|
|
|
|
|
self.patch_unembed = PatchUnEmbed( |
|
|
img_size=img_size, patch_size=patch_size, in_chans=embed_dim, embed_dim=embed_dim, |
|
|
norm_layer=norm_layer if self.patch_norm else None) |
|
|
|
|
|
|
|
|
if self.ape: |
|
|
self.absolute_pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim)) |
|
|
trunc_normal_(self.absolute_pos_embed, std=.02) |
|
|
|
|
|
self.pos_drop = nn.Dropout(p=drop_rate) |
|
|
|
|
|
|
|
|
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] |
|
|
|
|
|
|
|
|
self.layers = nn.ModuleList() |
|
|
for i_layer in range(self.num_layers): |
|
|
layer = RHAG( |
|
|
dim=embed_dim, |
|
|
input_resolution=(patches_resolution[0], patches_resolution[1]), |
|
|
depth=depths[i_layer], |
|
|
num_heads=num_heads[i_layer], |
|
|
window_size=window_size, |
|
|
compress_ratio=compress_ratio, |
|
|
squeeze_factor=squeeze_factor, |
|
|
conv_scale=conv_scale, |
|
|
overlap_ratio=overlap_ratio, |
|
|
mlp_ratio=self.mlp_ratio, |
|
|
qkv_bias=qkv_bias, |
|
|
qk_scale=qk_scale, |
|
|
drop=drop_rate, |
|
|
attn_drop=attn_drop_rate, |
|
|
drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])], |
|
|
norm_layer=norm_layer, |
|
|
downsample=None, |
|
|
use_checkpoint=use_checkpoint, |
|
|
img_size=img_size, |
|
|
patch_size=patch_size, |
|
|
resi_connection=resi_connection) |
|
|
self.layers.append(layer) |
|
|
self.norm = norm_layer(self.num_features) |
|
|
|
|
|
|
|
|
if resi_connection == '1conv': |
|
|
self.conv_after_body = nn.Conv2d(embed_dim, embed_dim, 3, 1, 1) |
|
|
elif resi_connection == 'identity': |
|
|
self.conv_after_body = nn.Identity() |
|
|
|
|
|
|
|
|
if self.upsampler == 'pixelshuffle': |
|
|
self.conv_before_upsample = nn.Sequential( |
|
|
nn.Conv2d(embed_dim, num_feat, 3, 1, 1), nn.LeakyReLU(inplace=True)) |
|
|
self.upsample = Upsample(upscale, num_feat) |
|
|
self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1) |
|
|
|
|
|
self.apply(self._init_weights) |
|
|
|
|
|
def _init_weights(self, m): |
|
|
if isinstance(m, nn.Linear): |
|
|
trunc_normal_(m.weight, std=.02) |
|
|
if isinstance(m, nn.Linear) and m.bias is not None: |
|
|
nn.init.constant_(m.bias, 0) |
|
|
elif isinstance(m, nn.LayerNorm): |
|
|
nn.init.constant_(m.bias, 0) |
|
|
nn.init.constant_(m.weight, 1.0) |
|
|
|
|
|
def calculate_rpi_sa(self): |
|
|
coords_h = torch.arange(self.window_size) |
|
|
coords_w = torch.arange(self.window_size) |
|
|
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) |
|
|
coords_flatten = torch.flatten(coords, 1) |
|
|
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] |
|
|
relative_coords = relative_coords.permute(1, 2, 0).contiguous() |
|
|
relative_coords[:, :, 0] += self.window_size - 1 |
|
|
relative_coords[:, :, 1] += self.window_size - 1 |
|
|
relative_coords[:, :, 0] *= 2 * self.window_size - 1 |
|
|
relative_position_index = relative_coords.sum(-1) |
|
|
return relative_position_index |
|
|
|
|
|
def calculate_rpi_oca(self): |
|
|
window_size_ori = self.window_size |
|
|
window_size_ext = self.window_size + int(self.overlap_ratio * self.window_size) |
|
|
|
|
|
coords_h = torch.arange(window_size_ori) |
|
|
coords_w = torch.arange(window_size_ori) |
|
|
coords_ori = torch.stack(torch.meshgrid([coords_h, coords_w])) |
|
|
coords_ori_flatten = torch.flatten(coords_ori, 1) |
|
|
|
|
|
coords_h = torch.arange(window_size_ext) |
|
|
coords_w = torch.arange(window_size_ext) |
|
|
coords_ext = torch.stack(torch.meshgrid([coords_h, coords_w])) |
|
|
coords_ext_flatten = torch.flatten(coords_ext, 1) |
|
|
|
|
|
relative_coords = coords_ext_flatten[:, None, :] - coords_ori_flatten[:, :, None] |
|
|
relative_coords = relative_coords.permute(1, 2, 0).contiguous() |
|
|
relative_coords[:, :, 0] += window_size_ori - window_size_ext + 1 |
|
|
relative_coords[:, :, 1] += window_size_ori - window_size_ext + 1 |
|
|
relative_coords[:, :, 0] *= window_size_ori + window_size_ext - 1 |
|
|
relative_position_index = relative_coords.sum(-1) |
|
|
return relative_position_index |
|
|
|
|
|
def calculate_mask(self, x_size): |
|
|
h, w = x_size |
|
|
img_mask = torch.zeros((1, h, w, 1)) |
|
|
h_slices = (slice(0, -self.window_size), slice(-self.window_size, -self.shift_size), slice(-self.shift_size, None)) |
|
|
w_slices = (slice(0, -self.window_size), slice(-self.window_size, -self.shift_size), slice(-self.shift_size, None)) |
|
|
cnt = 0 |
|
|
for h in h_slices: |
|
|
for w in w_slices: |
|
|
img_mask[:, h, w, :] = cnt |
|
|
cnt += 1 |
|
|
|
|
|
mask_windows = window_partition(img_mask, self.window_size) |
|
|
mask_windows = mask_windows.view(-1, self.window_size * self.window_size) |
|
|
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) |
|
|
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0)) |
|
|
return attn_mask |
|
|
|
|
|
@torch.jit.ignore |
|
|
def no_weight_decay(self): |
|
|
return {'absolute_pos_embed'} |
|
|
|
|
|
@torch.jit.ignore |
|
|
def no_weight_decay_keywords(self): |
|
|
return {'relative_position_bias_table'} |
|
|
|
|
|
def forward_features(self, x): |
|
|
x_size = (x.shape[2], x.shape[3]) |
|
|
|
|
|
attn_mask = self.calculate_mask(x_size).to(x.device) |
|
|
params = {'attn_mask': attn_mask, 'rpi_sa': self.relative_position_index_SA, 'rpi_oca': self.relative_position_index_OCA} |
|
|
|
|
|
x = self.patch_embed(x) |
|
|
if self.ape: |
|
|
x = x + self.absolute_pos_embed |
|
|
x = self.pos_drop(x) |
|
|
|
|
|
for layer in self.layers: |
|
|
x = layer(x, x_size, params) |
|
|
|
|
|
x = self.norm(x) |
|
|
x = self.patch_unembed(x, x_size) |
|
|
return x |
|
|
|
|
|
def forward(self, x): |
|
|
self.mean = self.mean.type_as(x) |
|
|
x = (x - self.mean) * self.img_range |
|
|
|
|
|
if self.upsampler == 'pixelshuffle': |
|
|
x = self.conv_first(x) |
|
|
x = self.conv_after_body(self.forward_features(x)) + x |
|
|
x = self.conv_before_upsample(x) |
|
|
x = self.conv_last(self.upsample(x)) |
|
|
|
|
|
x = x / self.img_range + self.mean |
|
|
return x |
|
|
|
|
|
|
|
|
|
|
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') |
|
|
|
|
|
model = HAT( |
|
|
upscale=4, |
|
|
in_chans=3, |
|
|
img_size=128, |
|
|
window_size=16, |
|
|
compress_ratio=3, |
|
|
squeeze_factor=30, |
|
|
conv_scale=0.01, |
|
|
overlap_ratio=0.5, |
|
|
img_range=1., |
|
|
depths=[6, 6, 6, 6, 6, 6], |
|
|
embed_dim=180, |
|
|
num_heads=[6, 6, 6, 6, 6, 6], |
|
|
mlp_ratio=2, |
|
|
upsampler='pixelshuffle', |
|
|
resi_connection='1conv' |
|
|
) |
|
|
|
|
|
|
|
|
checkpoint = torch.load('net_g_150000.pth', map_location=device) |
|
|
if 'params_ema' in checkpoint: |
|
|
model.load_state_dict(checkpoint['params_ema']) |
|
|
elif 'params' in checkpoint: |
|
|
model.load_state_dict(checkpoint['params']) |
|
|
else: |
|
|
model.load_state_dict(checkpoint) |
|
|
|
|
|
model.to(device) |
|
|
model.eval() |
|
|
|
|
|
|
|
|
def upscale_image(image): |
|
|
|
|
|
img_np = np.array(image).astype(np.float32) / 255.0 |
|
|
img_tensor = torch.from_numpy(img_np).permute(2, 0, 1).unsqueeze(0).to(device) |
|
|
|
|
|
|
|
|
h, w = img_tensor.shape[2], img_tensor.shape[3] |
|
|
|
|
|
|
|
|
pad_h = (16 - h % 16) % 16 |
|
|
pad_w = (16 - w % 16) % 16 |
|
|
|
|
|
if pad_h > 0 or pad_w > 0: |
|
|
img_tensor = torch.nn.functional.pad(img_tensor, (0, pad_w, 0, pad_h), mode='reflect') |
|
|
|
|
|
with torch.no_grad(): |
|
|
output = model(img_tensor) |
|
|
|
|
|
|
|
|
if pad_h > 0 or pad_w > 0: |
|
|
output = output[:, :, :h*4, :w*4] |
|
|
|
|
|
|
|
|
output_np = output.squeeze(0).permute(1, 2, 0).cpu().numpy() |
|
|
output_np = np.clip(output_np * 255.0, 0, 255).astype(np.uint8) |
|
|
|
|
|
return Image.fromarray(output_np) |
|
|
|
|
|
|
|
|
|
|
|
def get_sample_images(): |
|
|
sample_dir = "sample_images" |
|
|
if os.path.exists(sample_dir): |
|
|
image_files = glob.glob(os.path.join(sample_dir, "*.png")) + glob.glob(os.path.join(sample_dir, "*.jpg")) |
|
|
return sorted(image_files) |
|
|
return [] |
|
|
|
|
|
|
|
|
def validate_image_size(image): |
|
|
"""Validate that the image is exactly 130x130 pixels""" |
|
|
if image is None: |
|
|
return False, "No image provided" |
|
|
|
|
|
width, height = image.size |
|
|
if width != 130 or height != 130: |
|
|
return False, f"Image must be exactly 130x130 pixels. Your image is {width}x{height} pixels." |
|
|
|
|
|
return True, "Valid image size" |
|
|
|
|
|
def upscale_and_display(image): |
|
|
if image is None: |
|
|
return None, "Please upload an image or select a sample image." |
|
|
|
|
|
|
|
|
is_valid, message = validate_image_size(image) |
|
|
if not is_valid: |
|
|
return None, f"❌ Error: {message}" |
|
|
|
|
|
try: |
|
|
|
|
|
upscaled = upscale_image(image) |
|
|
return upscaled, "✅ Image successfully enhanced!" |
|
|
except Exception as e: |
|
|
return None, f"❌ Error processing image: {str(e)}" |
|
|
|
|
|
def select_sample_image(image_path): |
|
|
if image_path: |
|
|
return Image.open(image_path) |
|
|
return None |
|
|
|
|
|
def image_to_base64(image_path): |
|
|
"""Convert image to base64 data URL for CSS background""" |
|
|
img = Image.open(image_path) |
|
|
img.thumbnail((120, 120), Image.Resampling.LANCZOS) |
|
|
buffer = BytesIO() |
|
|
img.save(buffer, format='PNG') |
|
|
img_str = base64.b64encode(buffer.getvalue()).decode() |
|
|
return f"data:image/png;base64,{img_str}" |
|
|
|
|
|
|
|
|
def generate_css(): |
|
|
base_css = """ |
|
|
/* Target only the image display area, not the whole component */ |
|
|
.image-container [data-testid="image"] { |
|
|
height: 500px !important; |
|
|
min-height: 500px !important; |
|
|
} |
|
|
|
|
|
/* Make images fill their containers */ |
|
|
.image-container img { |
|
|
width: 500px !important; |
|
|
height: 500px !important; |
|
|
object-fit: contain !important; |
|
|
object-position: center !important; |
|
|
} |
|
|
|
|
|
/* Sample image buttons with background images */ |
|
|
.sample-image-btn { |
|
|
height: 120px !important; |
|
|
width: 120px !important; |
|
|
background-size: cover !important; |
|
|
background-position: center !important; |
|
|
border: 2px solid #ddd !important; |
|
|
border-radius: 8px !important; |
|
|
cursor: pointer !important; |
|
|
transition: border-color 0.2s !important; |
|
|
margin: 5px !important; |
|
|
} |
|
|
|
|
|
.sample-image-btn:hover { |
|
|
border-color: #007acc !important; |
|
|
} |
|
|
""" |
|
|
|
|
|
|
|
|
sample_images = get_sample_images() |
|
|
for i, img_path in enumerate(sample_images): |
|
|
base64_img = image_to_base64(img_path) |
|
|
base_css += f"#sample_btn_{i} {{ background-image: url('{base64_img}'); }}\n" |
|
|
|
|
|
return base_css |
|
|
|
|
|
css = generate_css() |
|
|
|
|
|
with gr.Blocks(css=css, title="HATSAT - Super-Resolution for Satellite Images") as iface: |
|
|
gr.Markdown("# HATSAT - Super-Resolution for Satellite Images") |
|
|
gr.Markdown("Upload a satellite image or select a sample to enhance its resolution by 4x.") |
|
|
gr.Markdown("⚠️ **Important**: Images must be exactly **130x130 pixels** for the model to work properly.") |
|
|
|
|
|
|
|
|
with gr.Accordion("Acknowledgments", open=False): |
|
|
gr.Markdown(""" |
|
|
### Base Model: HAT (Hybrid Attention Transformer) |
|
|
This model is a fine tuned version of **HAT**: |
|
|
- **GitHub Repository**: [https://github.com/XPixelGroup/HAT](https://github.com/XPixelGroup/HAT) |
|
|
- **Paper**: [Activating More Pixels in Image Super-Resolution Transformer](https://arxiv.org/abs/2205.04437) |
|
|
- **Authors**: Xiangyu Chen, Xintao Wang, Jiantao Zhou, Yu Qiao, Chao Dong |
|
|
|
|
|
### Training Dataset: SEN2NAIPv2 |
|
|
The model was fine-tuned using the **SEN2NAIPv2** dataset: |
|
|
- **HuggingFace Dataset**: [https://huggingface.co/datasets/tacofoundation/SEN2NAIPv2](https://huggingface.co/datasets/tacofoundation/SEN2NAIPv2) |
|
|
- **Description**: High-resolution satellite imagery dataset for super-resolution tasks |
|
|
""") |
|
|
|
|
|
|
|
|
sample_images = get_sample_images() |
|
|
sample_buttons = [] |
|
|
if sample_images: |
|
|
gr.Markdown("**Sample Images (click to select):**") |
|
|
with gr.Row(): |
|
|
for i, img_path in enumerate(sample_images): |
|
|
btn = gr.Button( |
|
|
"", |
|
|
elem_id=f"sample_btn_{i}", |
|
|
elem_classes="sample-image-btn" |
|
|
) |
|
|
sample_buttons.append((btn, img_path)) |
|
|
|
|
|
with gr.Row(): |
|
|
input_image = gr.Image( |
|
|
type="pil", |
|
|
label="Input Image (must be 130x130 pixels)", |
|
|
elem_classes="image-container", |
|
|
sources=["upload"], |
|
|
height=500, |
|
|
width=500 |
|
|
) |
|
|
|
|
|
output_image = gr.Image( |
|
|
type="pil", |
|
|
label="Enhanced Output (4x)", |
|
|
elem_classes="image-container", |
|
|
interactive=False, |
|
|
height=500, |
|
|
width=500, |
|
|
show_download_button=True |
|
|
) |
|
|
|
|
|
submit_btn = gr.Button("Enhance Image", variant="primary") |
|
|
|
|
|
|
|
|
status_message = gr.Textbox( |
|
|
label="Status", |
|
|
interactive=False, |
|
|
show_label=True |
|
|
) |
|
|
|
|
|
|
|
|
if sample_images: |
|
|
for btn, img_path in sample_buttons: |
|
|
btn.click(fn=lambda path=img_path: select_sample_image(path), outputs=input_image) |
|
|
|
|
|
submit_btn.click(fn=upscale_and_display, inputs=input_image, outputs=[output_image, status_message]) |
|
|
|
|
|
if __name__ == "__main__": |
|
|
iface.launch() |