Change title
Browse files- README.md +1 -1
- app.py +2 -2
- app_old.py +0 -700
README.md
CHANGED
|
@@ -9,7 +9,7 @@ app_file: app.py
|
|
| 9 |
pinned: false
|
| 10 |
---
|
| 11 |
|
| 12 |
-
#
|
| 13 |
|
| 14 |
This Hugging Face Space demonstrates a fine-tuned **Hybrid Attention Transformer (HAT)** model for satellite image super-resolution. The model performs 4x upscaling of satellite imagery, enhancing the resolution while preserving important geographical and structural details.
|
| 15 |
|
|
|
|
| 9 |
pinned: false
|
| 10 |
---
|
| 11 |
|
| 12 |
+
# HATSAT - Super-Resolution for Satellite Images
|
| 13 |
|
| 14 |
This Hugging Face Space demonstrates a fine-tuned **Hybrid Attention Transformer (HAT)** model for satellite image super-resolution. The model performs 4x upscaling of satellite imagery, enhancing the resolution while preserving important geographical and structural details.
|
| 15 |
|
app.py
CHANGED
|
@@ -821,8 +821,8 @@ def generate_css():
|
|
| 821 |
|
| 822 |
css = generate_css()
|
| 823 |
|
| 824 |
-
with gr.Blocks(css=css, title="
|
| 825 |
-
gr.Markdown("#
|
| 826 |
gr.Markdown("Upload a satellite image or select a sample to enhance its resolution by 4x.")
|
| 827 |
gr.Markdown("⚠️ **Important**: Images must be exactly **130x130 pixels** for the model to work properly.")
|
| 828 |
|
|
|
|
| 821 |
|
| 822 |
css = generate_css()
|
| 823 |
|
| 824 |
+
with gr.Blocks(css=css, title="HATSAT - Super-Resolution for Satellite Images") as iface:
|
| 825 |
+
gr.Markdown("# HATSAT - Super-Resolution for Satellite Images")
|
| 826 |
gr.Markdown("Upload a satellite image or select a sample to enhance its resolution by 4x.")
|
| 827 |
gr.Markdown("⚠️ **Important**: Images must be exactly **130x130 pixels** for the model to work properly.")
|
| 828 |
|
app_old.py
DELETED
|
@@ -1,700 +0,0 @@
|
|
| 1 |
-
import gradio as gr
|
| 2 |
-
import torch
|
| 3 |
-
import torch.nn as nn
|
| 4 |
-
import numpy as np
|
| 5 |
-
from PIL import Image
|
| 6 |
-
import cv2
|
| 7 |
-
import math
|
| 8 |
-
from einops import rearrange
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
def to_2tuple(x):
|
| 12 |
-
"""Convert input to tuple of length 2."""
|
| 13 |
-
if isinstance(x, (tuple, list)):
|
| 14 |
-
return tuple(x)
|
| 15 |
-
return (x, x)
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.):
|
| 19 |
-
"""Truncated normal initialization."""
|
| 20 |
-
def norm_cdf(x):
|
| 21 |
-
return (1. + math.erf(x / math.sqrt(2.))) / 2.
|
| 22 |
-
|
| 23 |
-
with torch.no_grad():
|
| 24 |
-
l = norm_cdf((a - mean) / std)
|
| 25 |
-
u = norm_cdf((b - mean) / std)
|
| 26 |
-
tensor.uniform_(2 * l - 1, 2 * u - 1)
|
| 27 |
-
tensor.erfinv_()
|
| 28 |
-
tensor.mul_(std * math.sqrt(2.))
|
| 29 |
-
tensor.add_(mean)
|
| 30 |
-
tensor.clamp_(min=a, max=b)
|
| 31 |
-
return tensor
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
def drop_path(x, drop_prob: float = 0., training: bool = False):
|
| 35 |
-
if drop_prob == 0. or not training:
|
| 36 |
-
return x
|
| 37 |
-
keep_prob = 1 - drop_prob
|
| 38 |
-
shape = (x.shape[0], ) + (1, ) * (x.ndim - 1)
|
| 39 |
-
random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
|
| 40 |
-
random_tensor.floor_()
|
| 41 |
-
output = x.div(keep_prob) * random_tensor
|
| 42 |
-
return output
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
class DropPath(nn.Module):
|
| 46 |
-
def __init__(self, drop_prob=None):
|
| 47 |
-
super(DropPath, self).__init__()
|
| 48 |
-
self.drop_prob = drop_prob
|
| 49 |
-
|
| 50 |
-
def forward(self, x):
|
| 51 |
-
return drop_path(x, self.drop_prob, self.training)
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
class ChannelAttention(nn.Module):
|
| 55 |
-
def __init__(self, num_feat, squeeze_factor=16):
|
| 56 |
-
super(ChannelAttention, self).__init__()
|
| 57 |
-
self.attention = nn.Sequential(
|
| 58 |
-
nn.AdaptiveAvgPool2d(1),
|
| 59 |
-
nn.Conv2d(num_feat, num_feat // squeeze_factor, 1, padding=0),
|
| 60 |
-
nn.ReLU(inplace=True),
|
| 61 |
-
nn.Conv2d(num_feat // squeeze_factor, num_feat, 1, padding=0),
|
| 62 |
-
nn.Sigmoid())
|
| 63 |
-
|
| 64 |
-
def forward(self, x):
|
| 65 |
-
y = self.attention(x)
|
| 66 |
-
return x * y
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
class CAB(nn.Module):
|
| 70 |
-
def __init__(self, num_feat, compress_ratio=3, squeeze_factor=30):
|
| 71 |
-
super(CAB, self).__init__()
|
| 72 |
-
self.cab = nn.Sequential(
|
| 73 |
-
nn.Conv2d(num_feat, num_feat // compress_ratio, 3, 1, 1),
|
| 74 |
-
nn.GELU(),
|
| 75 |
-
nn.Conv2d(num_feat // compress_ratio, num_feat, 3, 1, 1),
|
| 76 |
-
ChannelAttention(num_feat, squeeze_factor)
|
| 77 |
-
)
|
| 78 |
-
|
| 79 |
-
def forward(self, x):
|
| 80 |
-
return self.cab(x)
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
class Mlp(nn.Module):
|
| 84 |
-
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
|
| 85 |
-
super().__init__()
|
| 86 |
-
out_features = out_features or in_features
|
| 87 |
-
hidden_features = hidden_features or in_features
|
| 88 |
-
self.fc1 = nn.Linear(in_features, hidden_features)
|
| 89 |
-
self.act = act_layer()
|
| 90 |
-
self.fc2 = nn.Linear(hidden_features, out_features)
|
| 91 |
-
self.drop = nn.Dropout(drop)
|
| 92 |
-
|
| 93 |
-
def forward(self, x):
|
| 94 |
-
x = self.fc1(x)
|
| 95 |
-
x = self.act(x)
|
| 96 |
-
x = self.drop(x)
|
| 97 |
-
x = self.fc2(x)
|
| 98 |
-
x = self.drop(x)
|
| 99 |
-
return x
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
def window_partition(x, window_size):
|
| 103 |
-
B, H, W, C = x.shape
|
| 104 |
-
x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
|
| 105 |
-
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
|
| 106 |
-
return windows
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
def window_reverse(windows, window_size, H, W):
|
| 110 |
-
B = int(windows.shape[0] / (H * W / window_size / window_size))
|
| 111 |
-
x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
|
| 112 |
-
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
|
| 113 |
-
return x
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
class WindowAttention(nn.Module):
|
| 117 |
-
def __init__(self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.):
|
| 118 |
-
super().__init__()
|
| 119 |
-
self.dim = dim
|
| 120 |
-
self.window_size = window_size
|
| 121 |
-
self.num_heads = num_heads
|
| 122 |
-
head_dim = dim // num_heads
|
| 123 |
-
self.scale = qk_scale or head_dim ** -0.5
|
| 124 |
-
|
| 125 |
-
self.relative_position_bias_table = nn.Parameter(
|
| 126 |
-
torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads))
|
| 127 |
-
|
| 128 |
-
coords_h = torch.arange(self.window_size[0])
|
| 129 |
-
coords_w = torch.arange(self.window_size[1])
|
| 130 |
-
coords = torch.stack(torch.meshgrid([coords_h, coords_w]))
|
| 131 |
-
coords_flatten = torch.flatten(coords, 1)
|
| 132 |
-
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]
|
| 133 |
-
relative_coords = relative_coords.permute(1, 2, 0).contiguous()
|
| 134 |
-
relative_coords[:, :, 0] += self.window_size[0] - 1
|
| 135 |
-
relative_coords[:, :, 1] += self.window_size[1] - 1
|
| 136 |
-
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
|
| 137 |
-
relative_position_index = relative_coords.sum(-1)
|
| 138 |
-
self.register_buffer("relative_position_index", relative_position_index)
|
| 139 |
-
|
| 140 |
-
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
| 141 |
-
self.attn_drop = nn.Dropout(attn_drop)
|
| 142 |
-
self.proj = nn.Linear(dim, dim)
|
| 143 |
-
self.proj_drop = nn.Dropout(proj_drop)
|
| 144 |
-
|
| 145 |
-
nn.init.trunc_normal_(self.relative_position_bias_table, std=.02)
|
| 146 |
-
self.softmax = nn.Softmax(dim=-1)
|
| 147 |
-
|
| 148 |
-
def forward(self, x, mask=None):
|
| 149 |
-
B_, N, C = x.shape
|
| 150 |
-
qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
| 151 |
-
q, k, v = qkv[0], qkv[1], qkv[2]
|
| 152 |
-
|
| 153 |
-
q = q * self.scale
|
| 154 |
-
attn = (q @ k.transpose(-2, -1))
|
| 155 |
-
|
| 156 |
-
relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
|
| 157 |
-
self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1)
|
| 158 |
-
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous()
|
| 159 |
-
attn = attn + relative_position_bias.unsqueeze(0)
|
| 160 |
-
|
| 161 |
-
if mask is not None:
|
| 162 |
-
nW = mask.shape[0]
|
| 163 |
-
attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
|
| 164 |
-
attn = attn.view(-1, self.num_heads, N, N)
|
| 165 |
-
attn = self.softmax(attn)
|
| 166 |
-
else:
|
| 167 |
-
attn = self.softmax(attn)
|
| 168 |
-
|
| 169 |
-
attn = self.attn_drop(attn)
|
| 170 |
-
|
| 171 |
-
x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
|
| 172 |
-
x = self.proj(x)
|
| 173 |
-
x = self.proj_drop(x)
|
| 174 |
-
return x
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
class HAB(nn.Module):
|
| 178 |
-
def __init__(self, dim, input_resolution, num_heads, window_size=7, shift_size=0,
|
| 179 |
-
mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0.,
|
| 180 |
-
act_layer=nn.GELU, norm_layer=nn.LayerNorm, compress_ratio=3, squeeze_factor=30):
|
| 181 |
-
super().__init__()
|
| 182 |
-
self.dim = dim
|
| 183 |
-
self.input_resolution = input_resolution
|
| 184 |
-
self.num_heads = num_heads
|
| 185 |
-
self.window_size = window_size
|
| 186 |
-
self.shift_size = shift_size
|
| 187 |
-
self.mlp_ratio = mlp_ratio
|
| 188 |
-
if min(self.input_resolution) <= self.window_size:
|
| 189 |
-
self.shift_size = 0
|
| 190 |
-
self.window_size = min(self.input_resolution)
|
| 191 |
-
assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"
|
| 192 |
-
|
| 193 |
-
self.norm1 = norm_layer(dim)
|
| 194 |
-
self.attn = WindowAttention(
|
| 195 |
-
dim, window_size=(self.window_size, self.window_size), num_heads=num_heads,
|
| 196 |
-
qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
|
| 197 |
-
|
| 198 |
-
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
| 199 |
-
self.norm2 = norm_layer(dim)
|
| 200 |
-
mlp_hidden_dim = int(dim * mlp_ratio)
|
| 201 |
-
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
|
| 202 |
-
|
| 203 |
-
self.conv_scale = nn.Parameter(torch.ones(1))
|
| 204 |
-
self.conv_block = CAB(dim, compress_ratio, squeeze_factor)
|
| 205 |
-
|
| 206 |
-
if self.shift_size > 0:
|
| 207 |
-
H, W = self.input_resolution
|
| 208 |
-
img_mask = torch.zeros((1, H, W, 1))
|
| 209 |
-
h_slices = (slice(0, -self.window_size),
|
| 210 |
-
slice(-self.window_size, -self.shift_size),
|
| 211 |
-
slice(-self.shift_size, None))
|
| 212 |
-
w_slices = (slice(0, -self.window_size),
|
| 213 |
-
slice(-self.window_size, -self.shift_size),
|
| 214 |
-
slice(-self.shift_size, None))
|
| 215 |
-
cnt = 0
|
| 216 |
-
for h in h_slices:
|
| 217 |
-
for w in w_slices:
|
| 218 |
-
img_mask[:, h, w, :] = cnt
|
| 219 |
-
cnt += 1
|
| 220 |
-
|
| 221 |
-
mask_windows = window_partition(img_mask, self.window_size)
|
| 222 |
-
mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
|
| 223 |
-
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
|
| 224 |
-
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
|
| 225 |
-
else:
|
| 226 |
-
attn_mask = None
|
| 227 |
-
|
| 228 |
-
self.register_buffer("attn_mask", attn_mask)
|
| 229 |
-
|
| 230 |
-
def forward(self, x):
|
| 231 |
-
H, W = self.input_resolution
|
| 232 |
-
B, L, C = x.shape
|
| 233 |
-
assert L == H * W, "input feature has wrong size"
|
| 234 |
-
|
| 235 |
-
shortcut = x
|
| 236 |
-
x = self.norm1(x)
|
| 237 |
-
x = x.view(B, H, W, C)
|
| 238 |
-
|
| 239 |
-
if self.shift_size > 0:
|
| 240 |
-
shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
|
| 241 |
-
else:
|
| 242 |
-
shifted_x = x
|
| 243 |
-
|
| 244 |
-
x_windows = window_partition(shifted_x, self.window_size)
|
| 245 |
-
x_windows = x_windows.view(-1, self.window_size * self.window_size, C)
|
| 246 |
-
|
| 247 |
-
attn_windows = self.attn(x_windows, mask=self.attn_mask)
|
| 248 |
-
|
| 249 |
-
attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
|
| 250 |
-
shifted_x = window_reverse(attn_windows, self.window_size, H, W)
|
| 251 |
-
|
| 252 |
-
if self.shift_size > 0:
|
| 253 |
-
x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
|
| 254 |
-
else:
|
| 255 |
-
x = shifted_x
|
| 256 |
-
x = x.view(B, H * W, C)
|
| 257 |
-
|
| 258 |
-
x = shortcut + self.drop_path(x)
|
| 259 |
-
|
| 260 |
-
y = x
|
| 261 |
-
x = self.norm2(x)
|
| 262 |
-
x = self.mlp(x)
|
| 263 |
-
x = y + self.drop_path(x)
|
| 264 |
-
|
| 265 |
-
conv_x = self.conv_block(x.view(B, H, W, C).permute(0, 3, 1, 2))
|
| 266 |
-
conv_x = conv_x.permute(0, 2, 3, 1).view(B, H * W, C)
|
| 267 |
-
|
| 268 |
-
x = x + self.conv_scale * conv_x
|
| 269 |
-
|
| 270 |
-
return x
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
class OCAB(nn.Module):
|
| 274 |
-
def __init__(self, dim, input_resolution, window_size, overlap_ratio, num_heads,
|
| 275 |
-
mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0.,
|
| 276 |
-
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, compress_ratio=3,
|
| 277 |
-
squeeze_factor=30):
|
| 278 |
-
super().__init__()
|
| 279 |
-
self.dim = dim
|
| 280 |
-
self.input_resolution = input_resolution
|
| 281 |
-
self.window_size = window_size
|
| 282 |
-
self.num_heads = num_heads
|
| 283 |
-
self.shift_size = round(overlap_ratio * window_size)
|
| 284 |
-
self.mlp_ratio = mlp_ratio
|
| 285 |
-
|
| 286 |
-
if min(self.input_resolution) <= self.window_size:
|
| 287 |
-
self.shift_size = 0
|
| 288 |
-
self.window_size = min(self.input_resolution)
|
| 289 |
-
|
| 290 |
-
assert 0 <= self.shift_size, "shift_size >= 0 is required"
|
| 291 |
-
|
| 292 |
-
self.norm1 = norm_layer(dim)
|
| 293 |
-
self.attn = WindowAttention(
|
| 294 |
-
dim, window_size=(self.window_size, self.window_size), num_heads=num_heads,
|
| 295 |
-
qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
|
| 296 |
-
|
| 297 |
-
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
| 298 |
-
self.norm2 = norm_layer(dim)
|
| 299 |
-
mlp_hidden_dim = int(dim * mlp_ratio)
|
| 300 |
-
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
|
| 301 |
-
|
| 302 |
-
self.conv_scale = nn.Parameter(torch.ones(1))
|
| 303 |
-
self.conv_block = CAB(dim, compress_ratio, squeeze_factor)
|
| 304 |
-
|
| 305 |
-
def forward(self, x):
|
| 306 |
-
H, W = self.input_resolution
|
| 307 |
-
B, L, C = x.shape
|
| 308 |
-
assert L == H * W, "input feature has wrong size"
|
| 309 |
-
|
| 310 |
-
shortcut = x
|
| 311 |
-
x = self.norm1(x)
|
| 312 |
-
x = x.view(B, H, W, C)
|
| 313 |
-
|
| 314 |
-
pad_l = pad_t = 0
|
| 315 |
-
pad_r = (self.window_size - W % self.window_size) % self.window_size
|
| 316 |
-
pad_b = (self.window_size - H % self.window_size) % self.window_size
|
| 317 |
-
x = torch.nn.functional.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b))
|
| 318 |
-
_, Hp, Wp, _ = x.shape
|
| 319 |
-
|
| 320 |
-
if self.shift_size > 0:
|
| 321 |
-
shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
|
| 322 |
-
else:
|
| 323 |
-
shifted_x = x
|
| 324 |
-
|
| 325 |
-
x_windows = window_partition(shifted_x, self.window_size)
|
| 326 |
-
x_windows = x_windows.view(-1, self.window_size * self.window_size, C)
|
| 327 |
-
|
| 328 |
-
attn_windows = self.attn(x_windows, mask=None)
|
| 329 |
-
|
| 330 |
-
attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
|
| 331 |
-
shifted_x = window_reverse(attn_windows, self.window_size, Hp, Wp)
|
| 332 |
-
|
| 333 |
-
if self.shift_size > 0:
|
| 334 |
-
x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
|
| 335 |
-
else:
|
| 336 |
-
x = shifted_x
|
| 337 |
-
|
| 338 |
-
if pad_r > 0 or pad_b > 0:
|
| 339 |
-
x = x[:, :H, :W, :].contiguous()
|
| 340 |
-
|
| 341 |
-
x = x.view(B, H * W, C)
|
| 342 |
-
x = shortcut + self.drop_path(x)
|
| 343 |
-
|
| 344 |
-
y = x
|
| 345 |
-
x = self.norm2(x)
|
| 346 |
-
x = self.mlp(x)
|
| 347 |
-
x = y + self.drop_path(x)
|
| 348 |
-
|
| 349 |
-
conv_x = self.conv_block(x.view(B, H, W, C).permute(0, 3, 1, 2))
|
| 350 |
-
conv_x = conv_x.permute(0, 2, 3, 1).view(B, H * W, C)
|
| 351 |
-
|
| 352 |
-
x = x + self.conv_scale * conv_x
|
| 353 |
-
|
| 354 |
-
return x
|
| 355 |
-
|
| 356 |
-
|
| 357 |
-
class PatchEmbed(nn.Module):
|
| 358 |
-
def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None):
|
| 359 |
-
super().__init__()
|
| 360 |
-
img_size = (img_size, img_size)
|
| 361 |
-
patch_size = (patch_size, patch_size)
|
| 362 |
-
patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]]
|
| 363 |
-
self.img_size = img_size
|
| 364 |
-
self.patch_size = patch_size
|
| 365 |
-
self.patches_resolution = patches_resolution
|
| 366 |
-
self.num_patches = patches_resolution[0] * patches_resolution[1]
|
| 367 |
-
|
| 368 |
-
self.in_chans = in_chans
|
| 369 |
-
self.embed_dim = embed_dim
|
| 370 |
-
|
| 371 |
-
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
|
| 372 |
-
if norm_layer is not None:
|
| 373 |
-
self.norm = norm_layer(embed_dim)
|
| 374 |
-
else:
|
| 375 |
-
self.norm = None
|
| 376 |
-
|
| 377 |
-
def forward(self, x):
|
| 378 |
-
B, C, H, W = x.shape
|
| 379 |
-
assert H == self.img_size[0] and W == self.img_size[1], \
|
| 380 |
-
f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
|
| 381 |
-
x = self.proj(x).flatten(2).transpose(1, 2)
|
| 382 |
-
if self.norm is not None:
|
| 383 |
-
x = self.norm(x)
|
| 384 |
-
return x
|
| 385 |
-
|
| 386 |
-
|
| 387 |
-
class PatchUnEmbed(nn.Module):
|
| 388 |
-
def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None):
|
| 389 |
-
super().__init__()
|
| 390 |
-
img_size = (img_size, img_size)
|
| 391 |
-
patch_size = (patch_size, patch_size)
|
| 392 |
-
patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]]
|
| 393 |
-
self.img_size = img_size
|
| 394 |
-
self.patch_size = patch_size
|
| 395 |
-
self.patches_resolution = patches_resolution
|
| 396 |
-
self.num_patches = patches_resolution[0] * patches_resolution[1]
|
| 397 |
-
|
| 398 |
-
self.in_chans = in_chans
|
| 399 |
-
self.embed_dim = embed_dim
|
| 400 |
-
|
| 401 |
-
def forward(self, x, x_size):
|
| 402 |
-
H, W = x_size
|
| 403 |
-
B, HW, C = x.shape
|
| 404 |
-
x = x.transpose(1, 2).view(B, self.embed_dim, H, W)
|
| 405 |
-
return x
|
| 406 |
-
|
| 407 |
-
|
| 408 |
-
class RHAG(nn.Module):
|
| 409 |
-
def __init__(self, dim, input_resolution, depth, num_heads, window_size, compress_ratio,
|
| 410 |
-
squeeze_factor, conv_scale, overlap_ratio, mlp_ratio=4., qkv_bias=True, qk_scale=None,
|
| 411 |
-
drop=0., attn_drop=0., drop_path=0., norm_layer=nn.LayerNorm, downsample=None,
|
| 412 |
-
use_checkpoint=False):
|
| 413 |
-
super().__init__()
|
| 414 |
-
self.dim = dim
|
| 415 |
-
self.input_resolution = input_resolution
|
| 416 |
-
self.depth = depth
|
| 417 |
-
self.use_checkpoint = use_checkpoint
|
| 418 |
-
|
| 419 |
-
self.blocks_1 = nn.ModuleList([
|
| 420 |
-
HAB(dim=dim, input_resolution=input_resolution,
|
| 421 |
-
num_heads=num_heads, window_size=window_size,
|
| 422 |
-
shift_size=0 if (i % 2 == 0) else window_size // 2,
|
| 423 |
-
mlp_ratio=mlp_ratio,
|
| 424 |
-
qkv_bias=qkv_bias, qk_scale=qk_scale,
|
| 425 |
-
drop=drop, attn_drop=attn_drop,
|
| 426 |
-
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
|
| 427 |
-
norm_layer=norm_layer, compress_ratio=compress_ratio,
|
| 428 |
-
squeeze_factor=squeeze_factor)
|
| 429 |
-
for i in range(depth // 2)])
|
| 430 |
-
|
| 431 |
-
self.blocks_2 = nn.ModuleList([
|
| 432 |
-
OCAB(dim=dim, input_resolution=input_resolution,
|
| 433 |
-
window_size=window_size, overlap_ratio=overlap_ratio,
|
| 434 |
-
num_heads=num_heads, mlp_ratio=mlp_ratio,
|
| 435 |
-
qkv_bias=qkv_bias, qk_scale=qk_scale,
|
| 436 |
-
drop=drop, attn_drop=attn_drop,
|
| 437 |
-
drop_path=drop_path[i + depth//2] if isinstance(drop_path, list) else drop_path,
|
| 438 |
-
norm_layer=norm_layer, compress_ratio=compress_ratio,
|
| 439 |
-
squeeze_factor=squeeze_factor)
|
| 440 |
-
for i in range(depth // 2)])
|
| 441 |
-
|
| 442 |
-
self.conv = nn.Conv2d(dim, dim, 3, 1, 1)
|
| 443 |
-
self.conv_scale = conv_scale
|
| 444 |
-
|
| 445 |
-
if downsample is not None:
|
| 446 |
-
self.downsample = downsample(input_resolution, dim=dim, norm_layer=norm_layer)
|
| 447 |
-
else:
|
| 448 |
-
self.downsample = None
|
| 449 |
-
|
| 450 |
-
def forward(self, x, x_size):
|
| 451 |
-
H, W = x_size
|
| 452 |
-
res = x
|
| 453 |
-
for blk in self.blocks_1:
|
| 454 |
-
if self.use_checkpoint:
|
| 455 |
-
x = torch.utils.checkpoint.checkpoint(blk, x)
|
| 456 |
-
else:
|
| 457 |
-
x = blk(x)
|
| 458 |
-
for blk in self.blocks_2:
|
| 459 |
-
if self.use_checkpoint:
|
| 460 |
-
x = torch.utils.checkpoint.checkpoint(blk, x)
|
| 461 |
-
else:
|
| 462 |
-
x = blk(x)
|
| 463 |
-
|
| 464 |
-
conv_x = self.conv(x.transpose(1, 2).view(-1, self.dim, H, W)).view(-1, self.dim, H * W).transpose(1, 2)
|
| 465 |
-
x = res + x + conv_x * self.conv_scale
|
| 466 |
-
|
| 467 |
-
if self.downsample is not None:
|
| 468 |
-
x = self.downsample(x)
|
| 469 |
-
return x
|
| 470 |
-
|
| 471 |
-
|
| 472 |
-
class Upsample(nn.Sequential):
|
| 473 |
-
def __init__(self, scale, num_feat):
|
| 474 |
-
m = []
|
| 475 |
-
if (scale & (scale - 1)) == 0:
|
| 476 |
-
for _ in range(int(math.log(scale, 2))):
|
| 477 |
-
m.append(nn.Conv2d(num_feat, 4 * num_feat, 3, 1, 1))
|
| 478 |
-
m.append(nn.PixelShuffle(2))
|
| 479 |
-
elif scale == 3:
|
| 480 |
-
m.append(nn.Conv2d(num_feat, 9 * num_feat, 3, 1, 1))
|
| 481 |
-
m.append(nn.PixelShuffle(3))
|
| 482 |
-
else:
|
| 483 |
-
raise ValueError(f'scale {scale} is not supported. Supported scales: 2^n and 3.')
|
| 484 |
-
super(Upsample, self).__init__(*m)
|
| 485 |
-
|
| 486 |
-
|
| 487 |
-
class HAT(nn.Module):
|
| 488 |
-
def __init__(self, img_size=64, patch_size=1, in_chans=3, embed_dim=180, depths=[6, 6, 6, 6, 6, 6],
|
| 489 |
-
num_heads=[6, 6, 6, 6, 6, 6], window_size=16, compress_ratio=3, squeeze_factor=30,
|
| 490 |
-
conv_scale=0.01, overlap_ratio=0.5, mlp_ratio=4., qkv_bias=True, qk_scale=None,
|
| 491 |
-
drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1, norm_layer=nn.LayerNorm,
|
| 492 |
-
ape=False, patch_norm=True, use_checkpoint=False, upscale=2, img_range=1.,
|
| 493 |
-
upsampler='', resi_connection='1conv', **kwargs):
|
| 494 |
-
super(HAT, self).__init__()
|
| 495 |
-
|
| 496 |
-
self.window_size = window_size
|
| 497 |
-
self.shift_size = window_size // 2
|
| 498 |
-
self.overlap_ratio = overlap_ratio
|
| 499 |
-
num_in_ch = in_chans
|
| 500 |
-
num_out_ch = in_chans
|
| 501 |
-
num_feat = 64
|
| 502 |
-
self.img_range = img_range
|
| 503 |
-
if in_chans == 3:
|
| 504 |
-
rgb_mean = (0.4488, 0.4371, 0.4040)
|
| 505 |
-
self.mean = torch.Tensor(rgb_mean).view(1, 3, 1, 1)
|
| 506 |
-
else:
|
| 507 |
-
self.mean = torch.zeros(1, 1, 1, 1)
|
| 508 |
-
self.upscale = upscale
|
| 509 |
-
self.upsampler = upsampler
|
| 510 |
-
|
| 511 |
-
self.conv_first = nn.Conv2d(num_in_ch, embed_dim, 3, 1, 1)
|
| 512 |
-
|
| 513 |
-
self.num_layers = len(depths)
|
| 514 |
-
self.embed_dim = embed_dim
|
| 515 |
-
self.ape = ape
|
| 516 |
-
self.patch_norm = patch_norm
|
| 517 |
-
self.num_features = embed_dim
|
| 518 |
-
self.mlp_ratio = mlp_ratio
|
| 519 |
-
|
| 520 |
-
self.patch_embed = PatchEmbed(
|
| 521 |
-
img_size=img_size, patch_size=patch_size, in_chans=embed_dim, embed_dim=embed_dim,
|
| 522 |
-
norm_layer=norm_layer if self.patch_norm else None)
|
| 523 |
-
num_patches = self.patch_embed.num_patches
|
| 524 |
-
patches_resolution = self.patch_embed.patches_resolution
|
| 525 |
-
self.patches_resolution = patches_resolution
|
| 526 |
-
|
| 527 |
-
self.patch_unembed = PatchUnEmbed(
|
| 528 |
-
img_size=img_size, patch_size=patch_size, in_chans=embed_dim, embed_dim=embed_dim,
|
| 529 |
-
norm_layer=norm_layer if self.patch_norm else None)
|
| 530 |
-
|
| 531 |
-
if self.ape:
|
| 532 |
-
self.absolute_pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim))
|
| 533 |
-
nn.init.trunc_normal_(self.absolute_pos_embed, std=.02)
|
| 534 |
-
|
| 535 |
-
self.pos_drop = nn.Dropout(p=drop_rate)
|
| 536 |
-
|
| 537 |
-
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]
|
| 538 |
-
|
| 539 |
-
self.layers = nn.ModuleList()
|
| 540 |
-
for i_layer in range(self.num_layers):
|
| 541 |
-
layer = RHAG(dim=embed_dim,
|
| 542 |
-
input_resolution=(patches_resolution[0],
|
| 543 |
-
patches_resolution[1]),
|
| 544 |
-
depth=depths[i_layer],
|
| 545 |
-
num_heads=num_heads[i_layer],
|
| 546 |
-
window_size=window_size,
|
| 547 |
-
compress_ratio=compress_ratio,
|
| 548 |
-
squeeze_factor=squeeze_factor,
|
| 549 |
-
conv_scale=conv_scale,
|
| 550 |
-
overlap_ratio=overlap_ratio,
|
| 551 |
-
mlp_ratio=self.mlp_ratio,
|
| 552 |
-
qkv_bias=qkv_bias, qk_scale=qk_scale,
|
| 553 |
-
drop=drop_rate, attn_drop=attn_drop_rate,
|
| 554 |
-
drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])],
|
| 555 |
-
norm_layer=norm_layer,
|
| 556 |
-
downsample=None,
|
| 557 |
-
use_checkpoint=use_checkpoint)
|
| 558 |
-
self.layers.append(layer)
|
| 559 |
-
self.norm = norm_layer(self.num_features)
|
| 560 |
-
|
| 561 |
-
if resi_connection == '1conv':
|
| 562 |
-
self.conv_after_body = nn.Conv2d(embed_dim, embed_dim, 3, 1, 1)
|
| 563 |
-
elif resi_connection == '3conv':
|
| 564 |
-
self.conv_after_body = nn.Sequential(nn.Conv2d(embed_dim, embed_dim // 4, 3, 1, 1),
|
| 565 |
-
nn.LeakyReLU(negative_slope=0.2, inplace=True),
|
| 566 |
-
nn.Conv2d(embed_dim // 4, embed_dim // 4, 1, 1, 0),
|
| 567 |
-
nn.LeakyReLU(negative_slope=0.2, inplace=True),
|
| 568 |
-
nn.Conv2d(embed_dim // 4, embed_dim, 3, 1, 1))
|
| 569 |
-
|
| 570 |
-
if upsampler == 'pixelshuffle':
|
| 571 |
-
self.conv_before_upsample = nn.Sequential(nn.Conv2d(embed_dim, num_feat, 3, 1, 1),
|
| 572 |
-
nn.LeakyReLU(inplace=True))
|
| 573 |
-
self.upsample = Upsample(upscale, num_feat)
|
| 574 |
-
self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
|
| 575 |
-
|
| 576 |
-
self.apply(self._init_weights)
|
| 577 |
-
|
| 578 |
-
def _init_weights(self, m):
|
| 579 |
-
if isinstance(m, nn.Linear):
|
| 580 |
-
nn.init.trunc_normal_(m.weight, std=.02)
|
| 581 |
-
if isinstance(m, nn.Linear) and m.bias is not None:
|
| 582 |
-
nn.init.constant_(m.bias, 0)
|
| 583 |
-
elif isinstance(m, nn.LayerNorm):
|
| 584 |
-
nn.init.constant_(m.bias, 0)
|
| 585 |
-
nn.init.constant_(m.weight, 1.0)
|
| 586 |
-
|
| 587 |
-
@torch.jit.ignore
|
| 588 |
-
def no_weight_decay(self):
|
| 589 |
-
return {'absolute_pos_embed'}
|
| 590 |
-
|
| 591 |
-
@torch.jit.ignore
|
| 592 |
-
def no_weight_decay_keywords(self):
|
| 593 |
-
return {'relative_position_bias_table'}
|
| 594 |
-
|
| 595 |
-
def forward_features(self, x):
|
| 596 |
-
x_size = (x.shape[2], x.shape[3])
|
| 597 |
-
x = self.patch_embed(x)
|
| 598 |
-
if self.ape:
|
| 599 |
-
x = x + self.absolute_pos_embed
|
| 600 |
-
x = self.pos_drop(x)
|
| 601 |
-
|
| 602 |
-
for layer in self.layers:
|
| 603 |
-
x = layer(x, x_size)
|
| 604 |
-
|
| 605 |
-
x = self.norm(x)
|
| 606 |
-
x = self.patch_unembed(x, x_size)
|
| 607 |
-
|
| 608 |
-
return x
|
| 609 |
-
|
| 610 |
-
def forward(self, x):
|
| 611 |
-
self.mean = self.mean.type_as(x)
|
| 612 |
-
x = (x - self.mean) * self.img_range
|
| 613 |
-
|
| 614 |
-
x_first = self.conv_first(x)
|
| 615 |
-
res = self.conv_after_body(self.forward_features(x_first)) + x_first
|
| 616 |
-
if self.upsampler == 'pixelshuffle':
|
| 617 |
-
x = self.conv_before_upsample(res)
|
| 618 |
-
x = self.conv_last(self.upsample(x))
|
| 619 |
-
|
| 620 |
-
x = x / self.img_range + self.mean
|
| 621 |
-
|
| 622 |
-
return x
|
| 623 |
-
|
| 624 |
-
|
| 625 |
-
# Load the model
|
| 626 |
-
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 627 |
-
|
| 628 |
-
model = HAT(
|
| 629 |
-
upscale=4,
|
| 630 |
-
in_chans=3,
|
| 631 |
-
img_size=128,
|
| 632 |
-
window_size=16,
|
| 633 |
-
compress_ratio=3,
|
| 634 |
-
squeeze_factor=30,
|
| 635 |
-
conv_scale=0.01,
|
| 636 |
-
overlap_ratio=0.5,
|
| 637 |
-
img_range=1.,
|
| 638 |
-
depths=[6, 6, 6, 6, 6, 6],
|
| 639 |
-
embed_dim=180,
|
| 640 |
-
num_heads=[6, 6, 6, 6, 6, 6],
|
| 641 |
-
mlp_ratio=2,
|
| 642 |
-
upsampler='pixelshuffle',
|
| 643 |
-
resi_connection='1conv'
|
| 644 |
-
)
|
| 645 |
-
|
| 646 |
-
# Load the fine-tuned weights
|
| 647 |
-
checkpoint = torch.load('net_g_20000.pth', map_location=device)
|
| 648 |
-
if 'params_ema' in checkpoint:
|
| 649 |
-
model.load_state_dict(checkpoint['params_ema'])
|
| 650 |
-
elif 'params' in checkpoint:
|
| 651 |
-
model.load_state_dict(checkpoint['params'])
|
| 652 |
-
else:
|
| 653 |
-
model.load_state_dict(checkpoint)
|
| 654 |
-
|
| 655 |
-
model.to(device)
|
| 656 |
-
model.eval()
|
| 657 |
-
|
| 658 |
-
|
| 659 |
-
def upscale_image(image):
|
| 660 |
-
# Convert PIL image to tensor
|
| 661 |
-
img_np = np.array(image).astype(np.float32) / 255.0
|
| 662 |
-
img_tensor = torch.from_numpy(img_np).permute(2, 0, 1).unsqueeze(0).to(device)
|
| 663 |
-
|
| 664 |
-
# Ensure the image dimensions are multiples of window_size
|
| 665 |
-
h, w = img_tensor.shape[2], img_tensor.shape[3]
|
| 666 |
-
|
| 667 |
-
# Pad if necessary
|
| 668 |
-
pad_h = (16 - h % 16) % 16
|
| 669 |
-
pad_w = (16 - w % 16) % 16
|
| 670 |
-
|
| 671 |
-
if pad_h > 0 or pad_w > 0:
|
| 672 |
-
img_tensor = torch.nn.functional.pad(img_tensor, (0, pad_w, 0, pad_h), mode='reflect')
|
| 673 |
-
|
| 674 |
-
with torch.no_grad():
|
| 675 |
-
output = model(img_tensor)
|
| 676 |
-
|
| 677 |
-
# Remove padding if it was added
|
| 678 |
-
if pad_h > 0 or pad_w > 0:
|
| 679 |
-
output = output[:, :, :h*4, :w*4]
|
| 680 |
-
|
| 681 |
-
# Convert back to PIL image
|
| 682 |
-
output_np = output.squeeze(0).permute(1, 2, 0).cpu().numpy()
|
| 683 |
-
output_np = np.clip(output_np * 255.0, 0, 255).astype(np.uint8)
|
| 684 |
-
|
| 685 |
-
return Image.fromarray(output_np)
|
| 686 |
-
|
| 687 |
-
|
| 688 |
-
# Gradio interface
|
| 689 |
-
iface = gr.Interface(
|
| 690 |
-
fn=upscale_image,
|
| 691 |
-
inputs=gr.Image(type="pil", label="Input Satellite Image"),
|
| 692 |
-
outputs=gr.Image(type="pil", label="Super-Resolution Output (4x)"),
|
| 693 |
-
title="HAT Super-Resolution for Satellite Images",
|
| 694 |
-
description="Upload a satellite image to enhance its resolution by 4x using a fine-tuned HAT model. This model has been specifically trained on satellite imagery to provide high-quality super-resolution results.",
|
| 695 |
-
examples=None,
|
| 696 |
-
cache_examples=False
|
| 697 |
-
)
|
| 698 |
-
|
| 699 |
-
if __name__ == "__main__":
|
| 700 |
-
iface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|