File size: 3,436 Bytes
154404e 841d16c 154404e 36f9b89 154404e 4993aa4 841d16c 16cb92d 841d16c 16cb92d 841d16c 16cb92d 841d16c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 |
---
title: HAT Super-Resolution for Satellite Images
emoji: 🛰️
colorFrom: blue
colorTo: green
sdk: gradio
sdk_version: 5.46.1
app_file: app.py
pinned: false
---
# HATSAT - Super-Resolution for Satellite Images
This Hugging Face Space demonstrates a fine-tuned **Hybrid Attention Transformer (HAT)** model for satellite image super-resolution. The model performs 4x upscaling of satellite imagery, enhancing the resolution while preserving important geographical and structural details.
## Model Details
- **Architecture**: HAT (Hybrid Attention Transformer)
- **Upscaling Factor**: 4x
- **Input Channels**: 3 (RGB)
- **Training**: Fine-tuned on satellite imagery dataset
- **Base Model**: Pre-trained HAT model from ImageNet
## Model Configuration
- **Window Size**: 16
- **Embed Dimension**: 180
- **Depths**: [6, 6, 6, 6, 6, 6]
- **Number of Heads**: [6, 6, 6, 6, 6, 6]
- **Compress Ratio**: 3
- **Squeeze Factor**: 30
- **Overlap Ratio**: 0.5
## Usage
1. Upload a satellite image (RGB format)
2. The model will automatically upscale it by 4x
3. Download the enhanced high-resolution result
## Training Details
The model was fine-tuned using:
- **Loss Function**: L1Loss
- **Optimizer**: Adam (lr=2e-5)
- **Training Iterations**: 20,000
- **Scheduler**: MultiStepLR with milestones at [10000, 50000, 100000, 130000, 140000]
## Applications
This model is particularly useful for:
- Enhancing low-resolution satellite imagery
- Geographic analysis and mapping
- Environmental monitoring
- Urban planning and development
- Agricultural monitoring
## Technical Implementation
The model implements several key architectural components:
- **Hybrid Attention Blocks (HAB)**: Combining window-based and overlapping attention
- **Overlapping Cross-Attention Blocks (OCAB)**: For enhanced feature extraction
- **Residual Hybrid Attention Groups (RHAG)**: Stacked attention layers with residual connections
- **Channel Attention Blocks (CAB)**: For feature refinement
## Performance
The model has been trained for 20,000 iterations with careful monitoring of PSNR and SSIM metrics on satellite imagery validation data.
## Acknowledgments
This model is a fine tuned version of **HAT (Hybrid Attention Transformer)** and trained on the **SEN2NAIPv2** dataset.
### Base Model: HAT
- **GitHub Repository**: [https://github.com/XPixelGroup/HAT](https://github.com/XPixelGroup/HAT)
- **Paper**: [Activating More Pixels in Image Super-Resolution Transformer](https://arxiv.org/abs/2205.04437)
- **Authors**: Xiangyu Chen, Xintao Wang, Jiantao Zhou, Yu Qiao, Chao Dong
### Training Dataset: SEN2NAIPv2
- **HuggingFace Dataset**: [https://huggingface.co/datasets/tacofoundation/SEN2NAIPv2](https://huggingface.co/datasets/tacofoundation/SEN2NAIPv2)
- **Description**: High-resolution satellite imagery dataset for super-resolution tasks
## Citation
If you use this model in your research, please cite both the original HAT paper and the SEN2NAIPv2 dataset:
```bibtex
@article{chen2023hat,
title={Activating More Pixels in Image Super-Resolution Transformer},
author={Chen, Xiangyu and Wang, Xintao and Zhou, Jiantao and Qiao, Yu and Dong, Chao},
journal={arXiv preprint arXiv:2205.04437},
year={2022}
}
@misc{sen2naipv2,
title={SEN2NAIPv2: A Large-Scale Dataset for Satellite Image Super-Resolution},
author={TACO Foundation},
year={2024},
url={https://huggingface.co/datasets/tacofoundation/SEN2NAIPv2}
}
``` |