Akash_ai_talks / app.py
Akashmj22122002's picture
Upload folder using huggingface_hub
e47fb69 verified
raw
history blame
21.5 kB
# from dotenv import load_dotenv
# from openai import OpenAI
# import json
# import os
# import requests
# from pypdf import PdfReader
# import gradio as gr
# load_dotenv(override=True)
# def push(text):
# requests.post(
# "https://api.pushover.net/1/messages.json",
# data={
# "token": os.getenv("PUSHOVER_TOKEN"),
# "user": os.getenv("PUSHOVER_USER"),
# "message": text,
# }
# )
# def record_user_details(email, name="Name not provided", notes="not provided"):
# push(f"Recording {name} with email {email} and notes {notes}")
# return {"recorded": "ok"}
# def record_unknown_question(question):
# push(f"Recording {question}")
# return {"recorded": "ok"}
# record_user_details_json = {
# "name": "record_user_details",
# "description": "Use this tool to record that a user is interested in being in touch and provided an email address",
# "parameters": {
# "type": "object",
# "properties": {
# "email": {
# "type": "string",
# "description": "The email address of this user"
# },
# "name": {
# "type": "string",
# "description": "The user's name, if they provided it"
# }
# ,
# "notes": {
# "type": "string",
# "description": "Any additional information about the conversation that's worth recording to give context"
# }
# },
# "required": ["email"],
# "additionalProperties": False
# }
# }
# record_unknown_question_json = {
# "name": "record_unknown_question",
# "description": "Always use this tool to record any question that couldn't be answered as you didn't know the answer",
# "parameters": {
# "type": "object",
# "properties": {
# "question": {
# "type": "string",
# "description": "The question that couldn't be answered"
# },
# },
# "required": ["question"],
# "additionalProperties": False
# }
# }
# tools = [{"type": "function", "function": record_user_details_json},
# {"type": "function", "function": record_unknown_question_json}]
# class Me:
# def __init__(self):
# self.openai = OpenAI()
# self.name = "Ed Donner"
# reader = PdfReader("me/linkedin.pdf")
# self.linkedin = ""
# for page in reader.pages:
# text = page.extract_text()
# if text:
# self.linkedin += text
# with open("me/summary.txt", "r", encoding="utf-8") as f:
# self.summary = f.read()
# def handle_tool_call(self, tool_calls):
# results = []
# for tool_call in tool_calls:
# tool_name = tool_call.function.name
# arguments = json.loads(tool_call.function.arguments)
# print(f"Tool called: {tool_name}", flush=True)
# tool = globals().get(tool_name)
# result = tool(**arguments) if tool else {}
# results.append({"role": "tool","content": json.dumps(result),"tool_call_id": tool_call.id})
# return results
# def system_prompt(self):
# system_prompt = f"You are acting as {self.name}. You are answering questions on {self.name}'s website, \
# particularly questions related to {self.name}'s career, background, skills and experience. \
# Your responsibility is to represent {self.name} for interactions on the website as faithfully as possible. \
# You are given a summary of {self.name}'s background and LinkedIn profile which you can use to answer questions. \
# Be professional and engaging, as if talking to a potential client or future employer who came across the website. \
# If you don't know the answer to any question, use your record_unknown_question tool to record the question that you couldn't answer, even if it's about something trivial or unrelated to career. \
# If the user is engaging in discussion, try to steer them towards getting in touch via email; ask for their email and record it using your record_user_details tool. "
# system_prompt += f"\n\n## Summary:\n{self.summary}\n\n## LinkedIn Profile:\n{self.linkedin}\n\n"
# system_prompt += f"With this context, please chat with the user, always staying in character as {self.name}."
# return system_prompt
# def chat(self, message, history):
# messages = [{"role": "system", "content": self.system_prompt()}] + history + [{"role": "user", "content": message}]
# done = False
# while not done:
# response = self.openai.chat.completions.create(model="gpt-4o-mini", messages=messages, tools=tools)
# if response.choices[0].finish_reason=="tool_calls":
# message = response.choices[0].message
# tool_calls = message.tool_calls
# results = self.handle_tool_call(tool_calls)
# messages.append(message)
# messages.extend(results)
# else:
# done = True
# return response.choices[0].message.content
# if __name__ == "__main__":
# me = Me()
# gr.ChatInterface(me.chat, type="messages").launch()
# from dotenv import load_dotenv
# from openai import OpenAI
# import json
# import os
# import requests
# from pypdf import PdfReader
# import gradio as gr
# load_dotenv(override=True)
# GEMINI_BASE_URL = "https://generativelanguage.googleapis.com/v1beta/openai/"
# google_api_key = os.getenv("GOOGLE_API_KEY")
# # Initialize Gemini client
# gemini = OpenAI(
# base_url=GEMINI_BASE_URL,
# api_key=google_api_key
# )
# def push(text):
# requests.post(
# "https://api.pushover.net/1/messages.json",
# data={
# "token": os.getenv("PUSHOVER_TOKEN"),
# "user": os.getenv("PUSHOVER_USER"),
# "message": text,
# }
# )
# def record_user_details(email, name="Name not provided", notes="not provided"):
# push(f"Recording {name} with email {email} and notes {notes}")
# return {"recorded": "ok"}
# def record_unknown_question(question):
# push(f"Recording {question}")
# return {"recorded": "ok"}
# record_user_details_json = {
# "name": "record_user_details",
# "description": "Use this tool to record that a user is interested in being in touch and provided an email address",
# "parameters": {
# "type": "object",
# "properties": {
# "email": {
# "type": "string",
# "description": "The email address of this user"
# },
# "name": {
# "type": "string",
# "description": "The user's name, if they provided it"
# },
# "notes": {
# "type": "string",
# "description": "Any additional information about the conversation that's worth recording to give context"
# }
# },
# "required": ["email"],
# "additionalProperties": False
# }
# }
# record_unknown_question_json = {
# "name": "record_unknown_question",
# "description": "Always use this tool to record any question that couldn't be answered as you didn't know the answer",
# "parameters": {
# "type": "object",
# "properties": {
# "question": {
# "type": "string",
# "description": "The question that couldn't be answered"
# },
# },
# "required": ["question"],
# "additionalProperties": False
# }
# }
# tools = [
# {"type": "function", "function": record_user_details_json},
# {"type": "function", "function": record_unknown_question_json}
# ]
# class Me:
# def __init__(self):
# self.openai = gemini # REPLACED OpenAI WITH GEMINI
# self.name = "AKASH M J"
# reader = PdfReader("me/Profile.pdf")
# self.linkedin = ""
# for page in reader.pages:
# text = page.extract_text()
# if text:
# self.linkedin += text
# with open("me/summary.txt", "r", encoding="utf-8") as f:
# self.summary = f.read()
# def handle_tool_call(self, tool_calls):
# results = []
# for tool_call in tool_calls:
# tool_name = tool_call.function.name
# arguments = json.loads(tool_call.function.arguments)
# print(f"Tool called: {tool_name}", flush=True)
# tool = globals().get(tool_name)
# result = tool(**arguments) if tool else {}
# results.append({
# "role": "tool",
# "content": json.dumps(result),
# "tool_call_id": tool_call.id
# })
# return results
# def system_prompt(self):
# system_prompt = (
# f"You are acting as {self.name}. You are answering questions on {self.name}'s website, "
# f"particularly questions related to {self.name}'s career, background, skills and experience. "
# f"Your responsibility is to represent {self.name} for interactions on the website as faithfully as possible. "
# f"You are given a summary of {self.name}'s background and LinkedIn profile which you can use to answer questions. "
# f"Be professional and engaging, as if talking to a potential client or future employer who came across the website. "
# f"If you don't know the answer to any question, use your record_unknown_question tool to record the question. "
# f"If the user is engaging in discussion, try to steer them towards getting in touch via email."
# )
# system_prompt += f"\n\n## Summary:\n{self.summary}\n\n## LinkedIn Profile:\n{self.linkedin}\n\n"
# system_prompt += f"With this context, please chat with the user, always staying in character as {self.name}."
# return system_prompt
# def chat(self, message, history):
# messages = [
# {"role": "system", "content": self.system_prompt()}
# ] + history + [
# {"role": "user", "content": message}
# ]
# done = False
# while not done:
# # ---- CHANGED TO USE GEMINI ----
# response = self.openai.chat.completions.create(
# model="gemini-2.0-flash",
# messages=messages,
# tools=tools
# )
# # --------------------------------
# if response.choices[0].finish_reason == "tool_calls":
# message = response.choices[0].message
# tool_calls = message.tool_calls
# results = self.handle_tool_call(tool_calls)
# messages.append(message)
# messages.extend(results)
# else:
# done = True
# return response.choices[0].message.content
# if __name__ == "__main__":
# me = Me()
# gr.ChatInterface(me.chat, type="messages").launch()
# # gr.ChatInterface(me.chat).launch()
# app.py
from dotenv import load_dotenv
from openai import OpenAI
import json
import os
import requests
from pypdf import PdfReader
import gradio as gr
import sqlite3
import time
load_dotenv(override=True)
# --- CONFIG ---
GEMINI_BASE_URL = "https://generativelanguage.googleapis.com/v1beta/openai/"
google_api_key = os.getenv("GOOGLE_API_KEY")
# Initialize Gemini client (using OpenAI wrapper you used earlier)
gemini = OpenAI(base_url=GEMINI_BASE_URL, api_key=google_api_key)
# --- Pushover helper ---
def push(text):
token = os.getenv("PUSHOVER_TOKEN")
user = os.getenv("PUSHOVER_USER")
if not token or not user:
print("Pushover credentials not set. Skipping push.")
return
try:
requests.post(
"https://api.pushover.net/1/messages.json",
data={"token": token, "user": user, "message": text},
timeout=5
)
except Exception as e:
print("Pushover error:", e)
# --- Tools (actual implementations) ---
def record_user_details(email, name="Name not provided", notes="not provided"):
push(f"Recording contact: {name} <{email}> notes: {notes}")
return {"recorded": "ok", "email": email, "name": name}
def record_unknown_question(question):
push(f"Unknown question recorded: {question}")
# Optionally write to a local file for audits
os.makedirs("me/logs", exist_ok=True)
with open("me/logs/unknown_questions.txt", "a", encoding="utf-8") as f:
f.write(question.strip() + "\n")
return {"recorded": "ok", "question": question}
def search_faq(query):
db_path = os.path.join("me", "qa.db")
if not os.path.exists(db_path):
return {"answer": "FAQ database not found."}
conn = sqlite3.connect(db_path)
cur = conn.cursor()
cur.execute("SELECT answer FROM faq WHERE question LIKE ? LIMIT 1", (f"%{query}%",))
row = cur.fetchone()
conn.close()
return {"answer": row[0]} if row else {"answer": "not found"}
# --- Tool JSON metadata (for function-calling style) ---
record_user_details_json = {
"name": "record_user_details",
"description": "Record an interested user's email and optional name/notes.",
"parameters": {
"type": "object",
"properties": {
"email": {"type": "string"},
"name": {"type": "string"},
"notes": {"type": "string"}
},
"required": ["email"],
"additionalProperties": False
}
}
record_unknown_question_json = {
"name": "record_unknown_question",
"description": "Record any question the assistant could not answer.",
"parameters": {
"type": "object",
"properties": {
"question": {"type": "string"}
},
"required": ["question"],
"additionalProperties": False
}
}
search_faq_json = {
"name": "search_faq",
"description": "Search the FAQ database for a question.",
"parameters": {
"type": "object",
"properties": {
"query": {"type": "string"}
},
"required": ["query"],
"additionalProperties": False
}
}
tools = [
{"type": "function", "function": record_user_details_json},
{"type": "function", "function": record_unknown_question_json},
{"type": "function", "function": search_faq_json}
]
# --- The assistant class ---
class Me:
def __init__(self):
self.openai = gemini
self.name = "AKASH M J"
# Load profile PDF into self.linkedin
self.linkedin = ""
try:
reader = PdfReader(os.path.join("me", "Profile.pdf"))
for page in reader.pages:
text = page.extract_text()
if text:
self.linkedin += text + "\n"
except Exception as e:
print("Could not read Profile.pdf:", e)
# Load summary
try:
with open(os.path.join("me", "summary.txt"), "r", encoding="utf-8") as f:
self.summary = f.read()
except Exception as e:
print("Could not read summary.txt:", e)
self.summary = ""
# Load knowledge files (RAG-style simple concatenation)
self.knowledge = ""
kb_dir = os.path.join("me", "knowledge")
if os.path.exists(kb_dir):
for fn in sorted(os.listdir(kb_dir)):
path = os.path.join(kb_dir, fn)
try:
with open(path, "r", encoding="utf-8") as f:
self.knowledge += f"# {fn}\n" + f.read() + "\n\n"
except Exception as e:
print("Error reading", path, e)
def system_prompt(self):
system_prompt = (
f"You are acting as {self.name}. Answer questions about {self.name}'s background "
"and experience using the context provided. Be professional and concise. "
"If you don't know an answer, use the record_unknown_question tool."
)
system_prompt += f"\n\n## Summary:\n{self.summary}\n\n"
system_prompt += f"## LinkedIn profile (extracted):\n{self.linkedin}\n\n"
system_prompt += f"## Knowledge base:\n{self.knowledge}\n\n"
return system_prompt
def handle_tool_call(self, tool_calls):
results = []
for tool_call in tool_calls:
tool_name = tool_call.function.name
try:
arguments = json.loads(tool_call.function.arguments)
except Exception:
arguments = {}
print("Tool called:", tool_name, arguments, flush=True)
tool = globals().get(tool_name)
result = tool(**arguments) if tool else {}
results.append({
"role": "tool",
"content": json.dumps(result),
"tool_call_id": tool_call.id
})
return results
# Simple router/orchestrator: route common queries to the FAQ or to the LLM
def route_question(self, question):
q = question.lower()
# keywords that map to FAQ
faq_keywords = ["project", "tech stack", "stack", "skill", "skills", "study", "education", "experience"]
if any(k in q for k in faq_keywords):
return "search_faq"
return None
def evaluate_answer(self, user_question, ai_answer):
# Simple evaluator: ask the LLM to judge the quality
eval_prompt = f"""
You are an evaluator. Judge whether the assistant reply is clear, correct, and complete for the user question.
Return exactly PASS or FAIL and a one-line reason.
User question:
{user_question}
Assistant reply:
{ai_answer}
"""
try:
ev = self.openai.chat.completions.create(
model="gemini-2.0-flash",
messages=[{"role":"system","content":"You are an evaluator."},
{"role":"user","content":eval_prompt}]
)
text = ev.choices[0].message.content.strip()
# very simple parse
if text.upper().startswith("PASS"):
return {"result":"PASS", "note": text}
else:
return {"result":"FAIL", "note": text}
except Exception as e:
print("Evaluator failed:", e)
return {"result":"UNKNOWN", "note": str(e)}
def chat(self, message, history):
# build messages with system prompt + history + user
messages = [{"role":"system","content":self.system_prompt()}] + history + [{"role":"user","content":message}]
# 1) Router: check if the question should use the FAQ tool
tool_to_use = self.route_question(message)
if tool_to_use == "search_faq":
# call tool directly and return evaluated answer
tool_result = search_faq(message)
raw_answer = tool_result.get("answer", "I don't have that in my FAQ.")
eval_res = self.evaluate_answer(message, raw_answer)
if eval_res["result"] == "PASS":
return raw_answer
else:
# fall back to LLM if FAIL
pass
# 2) Normal LLM flow with tools support (function-calling style)
done = False
while not done:
response = self.openai.chat.completions.create(
model="gemini-2.0-flash",
messages=messages,
tools=tools
)
finish = response.choices[0].finish_reason
if finish == "tool_calls":
# the LLM asked to call a tool
message_obj = response.choices[0].message
tool_calls = getattr(message_obj, "tool_calls", [])
results = self.handle_tool_call(tool_calls)
messages.append(message_obj)
messages.extend(results)
# loop again so the LLM can consume tool outputs
else:
done = True
ai_answer = response.choices[0].message.content
# 3) Evaluate the answer; if FAIL, ask LLM to improve
eval_res = self.evaluate_answer(message, ai_answer)
if eval_res["result"] == "FAIL":
# ask the model to improve using the critique
improve_prompt = f"User question:\n{message}\n\nAssistant previous reply:\n{ai_answer}\n\nEvaluator note:\n{eval_res['note']}\n\nPlease produce an improved concise answer."
messages.append({"role":"user","content":improve_prompt})
improved_resp = self.openai.chat.completions.create(model="gemini-2.0-flash", messages=messages)
ai_answer = improved_resp.choices[0].message.content
return ai_answer
# --- Launch ---
if __name__ == "__main__":
me = Me()
gr.ChatInterface(me.chat, type="messages").launch()