Spaces:
Running
Running
File size: 21,545 Bytes
b02e301 e47fb69 b02e301 e47fb69 b02e301 e47fb69 b02e301 e47fb69 b02e301 e47fb69 b02e301 e47fb69 b02e301 e47fb69 b02e301 e47fb69 b02e301 e47fb69 b02e301 e47fb69 b02e301 e47fb69 b02e301 e47fb69 b02e301 e47fb69 b02e301 e47fb69 b02e301 e47fb69 b02e301 e47fb69 b02e301 e47fb69 b02e301 e47fb69 b02e301 e47fb69 b02e301 e47fb69 b02e301 e47fb69 b02e301 e47fb69 b02e301 e47fb69 b02e301 e47fb69 b02e301 e47fb69 b02e301 e47fb69 b02e301 e47fb69 b02e301 e47fb69 b02e301 e47fb69 b02e301 e47fb69 b02e301 e47fb69 b02e301 e47fb69 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 |
# from dotenv import load_dotenv
# from openai import OpenAI
# import json
# import os
# import requests
# from pypdf import PdfReader
# import gradio as gr
# load_dotenv(override=True)
# def push(text):
# requests.post(
# "https://api.pushover.net/1/messages.json",
# data={
# "token": os.getenv("PUSHOVER_TOKEN"),
# "user": os.getenv("PUSHOVER_USER"),
# "message": text,
# }
# )
# def record_user_details(email, name="Name not provided", notes="not provided"):
# push(f"Recording {name} with email {email} and notes {notes}")
# return {"recorded": "ok"}
# def record_unknown_question(question):
# push(f"Recording {question}")
# return {"recorded": "ok"}
# record_user_details_json = {
# "name": "record_user_details",
# "description": "Use this tool to record that a user is interested in being in touch and provided an email address",
# "parameters": {
# "type": "object",
# "properties": {
# "email": {
# "type": "string",
# "description": "The email address of this user"
# },
# "name": {
# "type": "string",
# "description": "The user's name, if they provided it"
# }
# ,
# "notes": {
# "type": "string",
# "description": "Any additional information about the conversation that's worth recording to give context"
# }
# },
# "required": ["email"],
# "additionalProperties": False
# }
# }
# record_unknown_question_json = {
# "name": "record_unknown_question",
# "description": "Always use this tool to record any question that couldn't be answered as you didn't know the answer",
# "parameters": {
# "type": "object",
# "properties": {
# "question": {
# "type": "string",
# "description": "The question that couldn't be answered"
# },
# },
# "required": ["question"],
# "additionalProperties": False
# }
# }
# tools = [{"type": "function", "function": record_user_details_json},
# {"type": "function", "function": record_unknown_question_json}]
# class Me:
# def __init__(self):
# self.openai = OpenAI()
# self.name = "Ed Donner"
# reader = PdfReader("me/linkedin.pdf")
# self.linkedin = ""
# for page in reader.pages:
# text = page.extract_text()
# if text:
# self.linkedin += text
# with open("me/summary.txt", "r", encoding="utf-8") as f:
# self.summary = f.read()
# def handle_tool_call(self, tool_calls):
# results = []
# for tool_call in tool_calls:
# tool_name = tool_call.function.name
# arguments = json.loads(tool_call.function.arguments)
# print(f"Tool called: {tool_name}", flush=True)
# tool = globals().get(tool_name)
# result = tool(**arguments) if tool else {}
# results.append({"role": "tool","content": json.dumps(result),"tool_call_id": tool_call.id})
# return results
# def system_prompt(self):
# system_prompt = f"You are acting as {self.name}. You are answering questions on {self.name}'s website, \
# particularly questions related to {self.name}'s career, background, skills and experience. \
# Your responsibility is to represent {self.name} for interactions on the website as faithfully as possible. \
# You are given a summary of {self.name}'s background and LinkedIn profile which you can use to answer questions. \
# Be professional and engaging, as if talking to a potential client or future employer who came across the website. \
# If you don't know the answer to any question, use your record_unknown_question tool to record the question that you couldn't answer, even if it's about something trivial or unrelated to career. \
# If the user is engaging in discussion, try to steer them towards getting in touch via email; ask for their email and record it using your record_user_details tool. "
# system_prompt += f"\n\n## Summary:\n{self.summary}\n\n## LinkedIn Profile:\n{self.linkedin}\n\n"
# system_prompt += f"With this context, please chat with the user, always staying in character as {self.name}."
# return system_prompt
# def chat(self, message, history):
# messages = [{"role": "system", "content": self.system_prompt()}] + history + [{"role": "user", "content": message}]
# done = False
# while not done:
# response = self.openai.chat.completions.create(model="gpt-4o-mini", messages=messages, tools=tools)
# if response.choices[0].finish_reason=="tool_calls":
# message = response.choices[0].message
# tool_calls = message.tool_calls
# results = self.handle_tool_call(tool_calls)
# messages.append(message)
# messages.extend(results)
# else:
# done = True
# return response.choices[0].message.content
# if __name__ == "__main__":
# me = Me()
# gr.ChatInterface(me.chat, type="messages").launch()
# from dotenv import load_dotenv
# from openai import OpenAI
# import json
# import os
# import requests
# from pypdf import PdfReader
# import gradio as gr
# load_dotenv(override=True)
# GEMINI_BASE_URL = "https://generativelanguage.googleapis.com/v1beta/openai/"
# google_api_key = os.getenv("GOOGLE_API_KEY")
# # Initialize Gemini client
# gemini = OpenAI(
# base_url=GEMINI_BASE_URL,
# api_key=google_api_key
# )
# def push(text):
# requests.post(
# "https://api.pushover.net/1/messages.json",
# data={
# "token": os.getenv("PUSHOVER_TOKEN"),
# "user": os.getenv("PUSHOVER_USER"),
# "message": text,
# }
# )
# def record_user_details(email, name="Name not provided", notes="not provided"):
# push(f"Recording {name} with email {email} and notes {notes}")
# return {"recorded": "ok"}
# def record_unknown_question(question):
# push(f"Recording {question}")
# return {"recorded": "ok"}
# record_user_details_json = {
# "name": "record_user_details",
# "description": "Use this tool to record that a user is interested in being in touch and provided an email address",
# "parameters": {
# "type": "object",
# "properties": {
# "email": {
# "type": "string",
# "description": "The email address of this user"
# },
# "name": {
# "type": "string",
# "description": "The user's name, if they provided it"
# },
# "notes": {
# "type": "string",
# "description": "Any additional information about the conversation that's worth recording to give context"
# }
# },
# "required": ["email"],
# "additionalProperties": False
# }
# }
# record_unknown_question_json = {
# "name": "record_unknown_question",
# "description": "Always use this tool to record any question that couldn't be answered as you didn't know the answer",
# "parameters": {
# "type": "object",
# "properties": {
# "question": {
# "type": "string",
# "description": "The question that couldn't be answered"
# },
# },
# "required": ["question"],
# "additionalProperties": False
# }
# }
# tools = [
# {"type": "function", "function": record_user_details_json},
# {"type": "function", "function": record_unknown_question_json}
# ]
# class Me:
# def __init__(self):
# self.openai = gemini # REPLACED OpenAI WITH GEMINI
# self.name = "AKASH M J"
# reader = PdfReader("me/Profile.pdf")
# self.linkedin = ""
# for page in reader.pages:
# text = page.extract_text()
# if text:
# self.linkedin += text
# with open("me/summary.txt", "r", encoding="utf-8") as f:
# self.summary = f.read()
# def handle_tool_call(self, tool_calls):
# results = []
# for tool_call in tool_calls:
# tool_name = tool_call.function.name
# arguments = json.loads(tool_call.function.arguments)
# print(f"Tool called: {tool_name}", flush=True)
# tool = globals().get(tool_name)
# result = tool(**arguments) if tool else {}
# results.append({
# "role": "tool",
# "content": json.dumps(result),
# "tool_call_id": tool_call.id
# })
# return results
# def system_prompt(self):
# system_prompt = (
# f"You are acting as {self.name}. You are answering questions on {self.name}'s website, "
# f"particularly questions related to {self.name}'s career, background, skills and experience. "
# f"Your responsibility is to represent {self.name} for interactions on the website as faithfully as possible. "
# f"You are given a summary of {self.name}'s background and LinkedIn profile which you can use to answer questions. "
# f"Be professional and engaging, as if talking to a potential client or future employer who came across the website. "
# f"If you don't know the answer to any question, use your record_unknown_question tool to record the question. "
# f"If the user is engaging in discussion, try to steer them towards getting in touch via email."
# )
# system_prompt += f"\n\n## Summary:\n{self.summary}\n\n## LinkedIn Profile:\n{self.linkedin}\n\n"
# system_prompt += f"With this context, please chat with the user, always staying in character as {self.name}."
# return system_prompt
# def chat(self, message, history):
# messages = [
# {"role": "system", "content": self.system_prompt()}
# ] + history + [
# {"role": "user", "content": message}
# ]
# done = False
# while not done:
# # ---- CHANGED TO USE GEMINI ----
# response = self.openai.chat.completions.create(
# model="gemini-2.0-flash",
# messages=messages,
# tools=tools
# )
# # --------------------------------
# if response.choices[0].finish_reason == "tool_calls":
# message = response.choices[0].message
# tool_calls = message.tool_calls
# results = self.handle_tool_call(tool_calls)
# messages.append(message)
# messages.extend(results)
# else:
# done = True
# return response.choices[0].message.content
# if __name__ == "__main__":
# me = Me()
# gr.ChatInterface(me.chat, type="messages").launch()
# # gr.ChatInterface(me.chat).launch()
# app.py
from dotenv import load_dotenv
from openai import OpenAI
import json
import os
import requests
from pypdf import PdfReader
import gradio as gr
import sqlite3
import time
load_dotenv(override=True)
# --- CONFIG ---
GEMINI_BASE_URL = "https://generativelanguage.googleapis.com/v1beta/openai/"
google_api_key = os.getenv("GOOGLE_API_KEY")
# Initialize Gemini client (using OpenAI wrapper you used earlier)
gemini = OpenAI(base_url=GEMINI_BASE_URL, api_key=google_api_key)
# --- Pushover helper ---
def push(text):
token = os.getenv("PUSHOVER_TOKEN")
user = os.getenv("PUSHOVER_USER")
if not token or not user:
print("Pushover credentials not set. Skipping push.")
return
try:
requests.post(
"https://api.pushover.net/1/messages.json",
data={"token": token, "user": user, "message": text},
timeout=5
)
except Exception as e:
print("Pushover error:", e)
# --- Tools (actual implementations) ---
def record_user_details(email, name="Name not provided", notes="not provided"):
push(f"Recording contact: {name} <{email}> notes: {notes}")
return {"recorded": "ok", "email": email, "name": name}
def record_unknown_question(question):
push(f"Unknown question recorded: {question}")
# Optionally write to a local file for audits
os.makedirs("me/logs", exist_ok=True)
with open("me/logs/unknown_questions.txt", "a", encoding="utf-8") as f:
f.write(question.strip() + "\n")
return {"recorded": "ok", "question": question}
def search_faq(query):
db_path = os.path.join("me", "qa.db")
if not os.path.exists(db_path):
return {"answer": "FAQ database not found."}
conn = sqlite3.connect(db_path)
cur = conn.cursor()
cur.execute("SELECT answer FROM faq WHERE question LIKE ? LIMIT 1", (f"%{query}%",))
row = cur.fetchone()
conn.close()
return {"answer": row[0]} if row else {"answer": "not found"}
# --- Tool JSON metadata (for function-calling style) ---
record_user_details_json = {
"name": "record_user_details",
"description": "Record an interested user's email and optional name/notes.",
"parameters": {
"type": "object",
"properties": {
"email": {"type": "string"},
"name": {"type": "string"},
"notes": {"type": "string"}
},
"required": ["email"],
"additionalProperties": False
}
}
record_unknown_question_json = {
"name": "record_unknown_question",
"description": "Record any question the assistant could not answer.",
"parameters": {
"type": "object",
"properties": {
"question": {"type": "string"}
},
"required": ["question"],
"additionalProperties": False
}
}
search_faq_json = {
"name": "search_faq",
"description": "Search the FAQ database for a question.",
"parameters": {
"type": "object",
"properties": {
"query": {"type": "string"}
},
"required": ["query"],
"additionalProperties": False
}
}
tools = [
{"type": "function", "function": record_user_details_json},
{"type": "function", "function": record_unknown_question_json},
{"type": "function", "function": search_faq_json}
]
# --- The assistant class ---
class Me:
def __init__(self):
self.openai = gemini
self.name = "AKASH M J"
# Load profile PDF into self.linkedin
self.linkedin = ""
try:
reader = PdfReader(os.path.join("me", "Profile.pdf"))
for page in reader.pages:
text = page.extract_text()
if text:
self.linkedin += text + "\n"
except Exception as e:
print("Could not read Profile.pdf:", e)
# Load summary
try:
with open(os.path.join("me", "summary.txt"), "r", encoding="utf-8") as f:
self.summary = f.read()
except Exception as e:
print("Could not read summary.txt:", e)
self.summary = ""
# Load knowledge files (RAG-style simple concatenation)
self.knowledge = ""
kb_dir = os.path.join("me", "knowledge")
if os.path.exists(kb_dir):
for fn in sorted(os.listdir(kb_dir)):
path = os.path.join(kb_dir, fn)
try:
with open(path, "r", encoding="utf-8") as f:
self.knowledge += f"# {fn}\n" + f.read() + "\n\n"
except Exception as e:
print("Error reading", path, e)
def system_prompt(self):
system_prompt = (
f"You are acting as {self.name}. Answer questions about {self.name}'s background "
"and experience using the context provided. Be professional and concise. "
"If you don't know an answer, use the record_unknown_question tool."
)
system_prompt += f"\n\n## Summary:\n{self.summary}\n\n"
system_prompt += f"## LinkedIn profile (extracted):\n{self.linkedin}\n\n"
system_prompt += f"## Knowledge base:\n{self.knowledge}\n\n"
return system_prompt
def handle_tool_call(self, tool_calls):
results = []
for tool_call in tool_calls:
tool_name = tool_call.function.name
try:
arguments = json.loads(tool_call.function.arguments)
except Exception:
arguments = {}
print("Tool called:", tool_name, arguments, flush=True)
tool = globals().get(tool_name)
result = tool(**arguments) if tool else {}
results.append({
"role": "tool",
"content": json.dumps(result),
"tool_call_id": tool_call.id
})
return results
# Simple router/orchestrator: route common queries to the FAQ or to the LLM
def route_question(self, question):
q = question.lower()
# keywords that map to FAQ
faq_keywords = ["project", "tech stack", "stack", "skill", "skills", "study", "education", "experience"]
if any(k in q for k in faq_keywords):
return "search_faq"
return None
def evaluate_answer(self, user_question, ai_answer):
# Simple evaluator: ask the LLM to judge the quality
eval_prompt = f"""
You are an evaluator. Judge whether the assistant reply is clear, correct, and complete for the user question.
Return exactly PASS or FAIL and a one-line reason.
User question:
{user_question}
Assistant reply:
{ai_answer}
"""
try:
ev = self.openai.chat.completions.create(
model="gemini-2.0-flash",
messages=[{"role":"system","content":"You are an evaluator."},
{"role":"user","content":eval_prompt}]
)
text = ev.choices[0].message.content.strip()
# very simple parse
if text.upper().startswith("PASS"):
return {"result":"PASS", "note": text}
else:
return {"result":"FAIL", "note": text}
except Exception as e:
print("Evaluator failed:", e)
return {"result":"UNKNOWN", "note": str(e)}
def chat(self, message, history):
# build messages with system prompt + history + user
messages = [{"role":"system","content":self.system_prompt()}] + history + [{"role":"user","content":message}]
# 1) Router: check if the question should use the FAQ tool
tool_to_use = self.route_question(message)
if tool_to_use == "search_faq":
# call tool directly and return evaluated answer
tool_result = search_faq(message)
raw_answer = tool_result.get("answer", "I don't have that in my FAQ.")
eval_res = self.evaluate_answer(message, raw_answer)
if eval_res["result"] == "PASS":
return raw_answer
else:
# fall back to LLM if FAIL
pass
# 2) Normal LLM flow with tools support (function-calling style)
done = False
while not done:
response = self.openai.chat.completions.create(
model="gemini-2.0-flash",
messages=messages,
tools=tools
)
finish = response.choices[0].finish_reason
if finish == "tool_calls":
# the LLM asked to call a tool
message_obj = response.choices[0].message
tool_calls = getattr(message_obj, "tool_calls", [])
results = self.handle_tool_call(tool_calls)
messages.append(message_obj)
messages.extend(results)
# loop again so the LLM can consume tool outputs
else:
done = True
ai_answer = response.choices[0].message.content
# 3) Evaluate the answer; if FAIL, ask LLM to improve
eval_res = self.evaluate_answer(message, ai_answer)
if eval_res["result"] == "FAIL":
# ask the model to improve using the critique
improve_prompt = f"User question:\n{message}\n\nAssistant previous reply:\n{ai_answer}\n\nEvaluator note:\n{eval_res['note']}\n\nPlease produce an improved concise answer."
messages.append({"role":"user","content":improve_prompt})
improved_resp = self.openai.chat.completions.create(model="gemini-2.0-flash", messages=messages)
ai_answer = improved_resp.choices[0].message.content
return ai_answer
# --- Launch ---
if __name__ == "__main__":
me = Me()
gr.ChatInterface(me.chat, type="messages").launch()
|