|
|
import argparse |
|
|
import glob |
|
|
import json |
|
|
import os |
|
|
|
|
|
import torch |
|
|
from accelerate import PartialState |
|
|
from src_inference.lora_helper import set_single_lora |
|
|
from src_inference.pipeline import FluxPipeline |
|
|
from PIL import Image |
|
|
|
|
|
|
|
|
def clear_cache(transformer): |
|
|
for _, attn_processor in transformer.attn_processors.items(): |
|
|
attn_processor.bank_kv.clear() |
|
|
|
|
|
|
|
|
class style_processor: |
|
|
def __init__(self, flux_path, lora_path, omni_path, device): |
|
|
|
|
|
self.device = device |
|
|
self.base_path = flux_path |
|
|
self.pipe = FluxPipeline.from_pretrained( |
|
|
self.base_path, torch_dtype=torch.bfloat16 |
|
|
).to(self.device) |
|
|
self.style_prompt = f"{os.path.basename(lora_path).replace('_rank128_bf16.safetensors', '').replace('_', ' ').title()} style, " |
|
|
|
|
|
|
|
|
set_single_lora( |
|
|
self.pipe.transformer, |
|
|
omni_path, |
|
|
lora_weights=[1], |
|
|
cond_size=512, |
|
|
) |
|
|
|
|
|
|
|
|
self.pipe.unload_lora_weights() |
|
|
self.pipe.load_lora_weights(lora_path, weight_name="lora_name.safetensors") |
|
|
|
|
|
def process(self, image_path, prompt): |
|
|
if isinstance(image_path, str): |
|
|
spatial_image = [Image.open(image_path).convert("RGB")] |
|
|
elif isinstance(image_path, Image.Image): |
|
|
spatial_image = [image_path] |
|
|
else: |
|
|
raise ValueError(f"Invalid image type: {type(image_path)}") |
|
|
|
|
|
subject_images = [] |
|
|
|
|
|
width, height = spatial_image[0].size |
|
|
|
|
|
image = self.pipe( |
|
|
prompt, |
|
|
height=height, |
|
|
width=width, |
|
|
guidance_scale=3.5, |
|
|
num_inference_steps=25, |
|
|
max_sequence_length=512, |
|
|
generator=torch.Generator("cpu").manual_seed(5), |
|
|
spatial_images=spatial_image, |
|
|
subject_images=subject_images, |
|
|
cond_size=512, |
|
|
).images[0] |
|
|
|
|
|
|
|
|
clear_cache(self.pipe.transformer) |
|
|
|
|
|
return image |
|
|
|
|
|
|
|
|
def get_images_from_path(path): |
|
|
if os.path.isdir(path): |
|
|
return glob.glob(os.path.join(path, "*.jpg")) + glob.glob( |
|
|
os.path.join(path, "*.png") |
|
|
) |
|
|
elif os.path.isfile(path) and (path.endswith(".jpg") or path.endswith(".png")): |
|
|
return [path] |
|
|
else: |
|
|
return [] |
|
|
|
|
|
|
|
|
def parse_args(): |
|
|
parser = argparse.ArgumentParser(description="Style processor") |
|
|
parser.add_argument("--flux_path", type=str, required=True) |
|
|
parser.add_argument("--lora_paths", type=str, required=True, nargs="+") |
|
|
parser.add_argument("--omni_path", type=str, required=True) |
|
|
parser.add_argument("--output_dir", type=str, required=True) |
|
|
parser.add_argument("--prompt_dir", type=str, required=True) |
|
|
parser.add_argument("--images_path", type=str, required=True) |
|
|
return parser.parse_args() |
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
args = parse_args() |
|
|
flux_path = args.flux_path |
|
|
lora_paths = args.lora_paths |
|
|
omni_path = args.omni_path |
|
|
output_dir = args.output_dir |
|
|
prompt_dir = args.prompt_dir |
|
|
images_path = args.images_path |
|
|
|
|
|
distributed_state = PartialState() |
|
|
|
|
|
device = distributed_state.device |
|
|
rank = int(str(device).split(":")[1]) |
|
|
lora = lora_paths[rank] |
|
|
|
|
|
output_lora_path = os.path.join(output_dir, os.path.basename(lora)) |
|
|
os.makedirs(output_lora_path, exist_ok=True) |
|
|
|
|
|
processor = style_processor(flux_path, lora, omni_path, device) |
|
|
|
|
|
images_path = get_images_from_path(images_path) |
|
|
for image_path in images_path: |
|
|
image_output_path = os.path.join(output_lora_path, os.path.basename(image_path)) |
|
|
if os.path.exists(image_output_path): |
|
|
print(f"File {image_output_path} already exists, skipping.") |
|
|
continue |
|
|
|
|
|
try: |
|
|
with open( |
|
|
os.path.join(prompt_dir, os.path.basename(image_path) + ".json") |
|
|
) as f: |
|
|
prompt = json.load(f)["caption"] |
|
|
output = processor.process(image_path, processor.style_prompt + prompt) |
|
|
output.save(image_output_path) |
|
|
except Exception as e: |
|
|
print(f"Error processing {image_path}: {e}") |
|
|
|