File size: 4,235 Bytes
5b7ef6c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import argparse
import glob
import json
import os

import torch
from accelerate import PartialState
from src_inference.lora_helper import set_single_lora
from src_inference.pipeline import FluxPipeline
from PIL import Image


def clear_cache(transformer):
    for _, attn_processor in transformer.attn_processors.items():
        attn_processor.bank_kv.clear()


class style_processor:
    def __init__(self, flux_path, lora_path, omni_path, device):
        # Initialize model
        self.device = device
        self.base_path = flux_path  # assuming 'flux' is the base path
        self.pipe = FluxPipeline.from_pretrained(
            self.base_path, torch_dtype=torch.bfloat16
        ).to(self.device)
        self.style_prompt = f"{os.path.basename(lora_path).replace('_rank128_bf16.safetensors', '').replace('_', ' ').title()} style, "

        # Load OmniConsistency model
        set_single_lora(
            self.pipe.transformer,
            omni_path,
            lora_weights=[1],
            cond_size=512,
        )

        # Load external LoRA
        self.pipe.unload_lora_weights()
        self.pipe.load_lora_weights(lora_path, weight_name="lora_name.safetensors")

    def process(self, image_path, prompt):
        if isinstance(image_path, str):
            spatial_image = [Image.open(image_path).convert("RGB")]
        elif isinstance(image_path, Image.Image):
            spatial_image = [image_path]
        else:
            raise ValueError(f"Invalid image type: {type(image_path)}")

        subject_images = []

        width, height = spatial_image[0].size

        image = self.pipe(
            prompt,
            height=height,
            width=width,
            guidance_scale=3.5,
            num_inference_steps=25,
            max_sequence_length=512,
            generator=torch.Generator("cpu").manual_seed(5),
            spatial_images=spatial_image,
            subject_images=subject_images,
            cond_size=512,
        ).images[0]

        # Clear cache after generation
        clear_cache(self.pipe.transformer)

        return image


def get_images_from_path(path):
    if os.path.isdir(path):
        return glob.glob(os.path.join(path, "*.jpg")) + glob.glob(
            os.path.join(path, "*.png")
        )
    elif os.path.isfile(path) and (path.endswith(".jpg") or path.endswith(".png")):
        return [path]
    else:
        return []


def parse_args():
    parser = argparse.ArgumentParser(description="Style processor")
    parser.add_argument("--flux_path", type=str, required=True)
    parser.add_argument("--lora_paths", type=str, required=True, nargs="+")
    parser.add_argument("--omni_path", type=str, required=True)
    parser.add_argument("--output_dir", type=str, required=True)
    parser.add_argument("--prompt_dir", type=str, required=True)
    parser.add_argument("--images_path", type=str, required=True)
    return parser.parse_args()


if __name__ == "__main__":
    args = parse_args()
    flux_path = args.flux_path
    lora_paths = args.lora_paths
    omni_path = args.omni_path
    output_dir = args.output_dir
    prompt_dir = args.prompt_dir
    images_path = args.images_path

    distributed_state = PartialState()

    device = distributed_state.device
    rank = int(str(device).split(":")[1])
    lora = lora_paths[rank]

    output_lora_path = os.path.join(output_dir, os.path.basename(lora))
    os.makedirs(output_lora_path, exist_ok=True)

    processor = style_processor(flux_path, lora, omni_path, device)

    images_path = get_images_from_path(images_path)
    for image_path in images_path:
        image_output_path = os.path.join(output_lora_path, os.path.basename(image_path))
        if os.path.exists(image_output_path):
            print(f"File {image_output_path} already exists, skipping.")
            continue

        try:
            with open(
                os.path.join(prompt_dir, os.path.basename(image_path) + ".json")
            ) as f:
                prompt = json.load(f)["caption"]
            output = processor.process(image_path, processor.style_prompt + prompt)
            output.save(image_output_path)
        except Exception as e:
            print(f"Error processing {image_path}: {e}")