|
|
import time |
|
|
import torch |
|
|
from PIL import Image |
|
|
from src_inference.pipeline import FluxPipeline |
|
|
from src_inference.lora_helper import set_single_lora |
|
|
|
|
|
|
|
|
|
|
|
def clear_cache(transformer): |
|
|
for name, attn_processor in transformer.attn_processors.items(): |
|
|
attn_processor.bank_kv.clear() |
|
|
|
|
|
base_path = "black-forest-labs/FLUX.1-dev" |
|
|
pipe = FluxPipeline.from_pretrained(base_path, torch_dtype=torch.bfloat16).to("cuda") |
|
|
|
|
|
set_single_lora(pipe.transformer, |
|
|
"/path/to/OmniConsistency.safetensors", |
|
|
lora_weights=[1], cond_size=512) |
|
|
|
|
|
pipe.unload_lora_weights() |
|
|
pipe.load_lora_weights("/path/to/lora_folder", |
|
|
weight_name="lora_name.safetensors") |
|
|
|
|
|
image_path1 = "figure/test.png" |
|
|
prompt = "3D Chibi style, Three individuals standing together in the office." |
|
|
|
|
|
subject_images = [] |
|
|
spatial_image = [Image.open(image_path1).convert("RGB")] |
|
|
|
|
|
width, height = 1024, 1024 |
|
|
|
|
|
start_time = time.time() |
|
|
|
|
|
image = pipe( |
|
|
prompt, |
|
|
height=height, |
|
|
width=width, |
|
|
guidance_scale=3.5, |
|
|
num_inference_steps=25, |
|
|
max_sequence_length=512, |
|
|
generator=torch.Generator("cpu").manual_seed(5), |
|
|
spatial_images=spatial_image, |
|
|
subject_images=subject_images, |
|
|
cond_size=512, |
|
|
).images[0] |
|
|
|
|
|
end_time = time.time() |
|
|
elapsed_time = end_time - start_time |
|
|
print(f"code running time: {elapsed_time} s") |
|
|
|
|
|
|
|
|
clear_cache(pipe.transformer) |
|
|
|
|
|
image.save("results/output.png") |
|
|
|