import time import torch from PIL import Image from src_inference.pipeline import FluxPipeline from src_inference.lora_helper import set_single_lora # torch.cuda.set_device(0) def clear_cache(transformer): for name, attn_processor in transformer.attn_processors.items(): attn_processor.bank_kv.clear() base_path = "black-forest-labs/FLUX.1-dev" pipe = FluxPipeline.from_pretrained(base_path, torch_dtype=torch.bfloat16).to("cuda") set_single_lora(pipe.transformer, "/path/to/OmniConsistency.safetensors", lora_weights=[1], cond_size=512) pipe.unload_lora_weights() pipe.load_lora_weights("/path/to/lora_folder", weight_name="lora_name.safetensors") image_path1 = "figure/test.png" prompt = "3D Chibi style, Three individuals standing together in the office." subject_images = [] spatial_image = [Image.open(image_path1).convert("RGB")] width, height = 1024, 1024 start_time = time.time() image = pipe( prompt, height=height, width=width, guidance_scale=3.5, num_inference_steps=25, max_sequence_length=512, generator=torch.Generator("cpu").manual_seed(5), spatial_images=spatial_image, subject_images=subject_images, cond_size=512, ).images[0] end_time = time.time() elapsed_time = end_time - start_time print(f"code running time: {elapsed_time} s") # Clear cache after generation clear_cache(pipe.transformer) image.save("results/output.png")