metadata
license: apache-2.0
task_categories:
- visual-question-answering
- object-detection
language:
- en
tags:
- vision
- spatial-reasoning
- bounding-box
- vstar-bench
size_categories:
- n<1K
dataset_info:
features:
- name: image
dtype: image
- name: text
dtype: string
- name: category
dtype: string
- name: question_id
dtype: string
- name: label
dtype: string
- name: bbox_target
list:
list: int64
- name: bbox_category
dtype: string
- name: target_object
dtype: 'null'
- name: bbox_source
dtype: string
- name: original_image_size
list: int64
splits:
- name: test
num_bytes: 122037795
num_examples: 191
download_size: 121916164
dataset_size: 122037795
configs:
- config_name: default
data_files:
- split: test
path: data/test-*
vstar-bench with Bounding Box Annotations
Dataset Description
This dataset extends lmms-lab/vstar-bench by adding bounding box annotations for target objects. The bounding box information was extracted from craigwu/vstar_bench and mapped to the lmms-lab version.
Key Features
- Visual Spatial Reasoning: Tests understanding of spatial relationships in images
- Bounding Box Annotations: Each sample includes target object bounding boxes
- Multiple Choice QA: 4-way multiple choice questions about spatial relationships
- High Coverage: 100.0% of samples have bounding box annotations
Dataset Statistics
- Total Samples: 191
- Samples with Bbox: 191
- Coverage: 100.0%
Dataset Structure
Each sample contains:
image: PIL Image objecttext: Question text (includes target object mention)bbox_target: Bounding box coordinates [x, y, width, height]target_object: Name of the target objectlabel: Correct answer (A/B/C/D)question_id: Unique question identifiercategory: Question category (e.g., "relative_position")
Example
from datasets import load_dataset
dataset = load_dataset("jae-minkim/vstar-bench-with-bbox")
sample = dataset['test'][0]
print(f"Question: {sample['text']}")
print(f"Target Object: {sample['target_object']}")
print(f"Bounding Box: {sample['bbox_target']}")
print(f"Answer: {sample['label']}")
Usage
Load Dataset
from datasets import load_dataset
# Load the dataset
dataset = load_dataset("jae-minkim/vstar-bench-with-bbox")
# Access test split
test_data = dataset['test']
# Iterate over samples
for sample in test_data:
image = sample['image']
bbox = sample['bbox_target'] # [x, y, width, height]
question = sample['text']
answer = sample['label']
Visualize Bounding Boxes
import matplotlib.pyplot as plt
import matplotlib.patches as patches
sample = dataset['test'][0]
fig, ax = plt.subplots(1, 1, figsize=(10, 8))
ax.imshow(sample['image'])
if sample['bbox_target']:
x, y, w, h = sample['bbox_target']
rect = patches.Rectangle(
(x, y), w, h,
linewidth=3, edgecolor='red', facecolor='none'
)
ax.add_patch(rect)
ax.text(x, y-10, sample['target_object'],
color='red', fontsize=12, fontweight='bold')
ax.set_title(sample['text'])
ax.axis('off')
plt.show()
Applications
This dataset is particularly useful for:
- Vision-Language Model Evaluation: Testing spatial reasoning capabilities
- Attention Visualization: Analyzing if models attend to correct regions
- Token Shifting Research: Redirecting high-norm tokens to target regions
- Grounded QA: Question answering with explicit spatial grounding
Source Datasets
- lmms-lab/vstar-bench: Base dataset with questions and images
- craigwu/vstar_bench: Source of bounding box annotations
Citation
If you use this dataset, please cite the original vstar-bench paper:
@article{wu2023vstar,
title={V*: Guided Visual Search as a Core Mechanism in Multimodal LLMs},
author={Wu, Penghao and Xie, Saining},
journal={arXiv preprint arXiv:2312.14135},
year={2023}
}
License
Apache 2.0 (following the original vstar-bench license)
Acknowledgments
- Original dataset: lmms-lab/vstar-bench
- Bounding box source: craigwu/vstar_bench