SentenceTransformer based on microsoft/deberta-v3-xsmall
This is a sentence-transformers model finetuned from microsoft/deberta-v3-xsmall on the stanfordnlp/snli dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: microsoft/deberta-v3-xsmall
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DebertaV2Model
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the ๐ค Hub
model = SentenceTransformer("bobox/DeBERTaV3-xSmall-SentenceTransformer-0.03")
# Run inference
sentences = [
'in each square',
'It is widespread.',
'A young girl flips an omelet.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Dataset:
sts-dev - Evaluated with
EmbeddingSimilarityEvaluator
| Metric | Value |
|---|---|
| pearson_cosine | 0.7972 |
| spearman_cosine | 0.807 |
| pearson_manhattan | 0.8079 |
| spearman_manhattan | 0.8072 |
| pearson_euclidean | 0.8084 |
| spearman_euclidean | 0.8073 |
| pearson_dot | 0.7029 |
| spearman_dot | 0.6909 |
| pearson_max | 0.8084 |
| spearman_max | 0.8073 |
Binary Classification
- Evaluated with
BinaryClassificationEvaluator
| Metric | Value |
|---|---|
| cosine_accuracy | 0.6772 |
| cosine_accuracy_threshold | 0.7285 |
| cosine_f1 | 0.7187 |
| cosine_f1_threshold | 0.6111 |
| cosine_precision | 0.611 |
| cosine_recall | 0.8724 |
| cosine_ap | 0.7392 |
| dot_accuracy | 0.6383 |
| dot_accuracy_threshold | 228.4041 |
| dot_f1 | 0.7068 |
| dot_f1_threshold | 177.3942 |
| dot_precision | 0.5811 |
| dot_recall | 0.9017 |
| dot_ap | 0.6904 |
| manhattan_accuracy | 0.6635 |
| manhattan_accuracy_threshold | 174.6275 |
| manhattan_f1 | 0.7054 |
| manhattan_f1_threshold | 232.6788 |
| manhattan_precision | 0.5772 |
| manhattan_recall | 0.907 |
| manhattan_ap | 0.7282 |
| euclidean_accuracy | 0.6651 |
| euclidean_accuracy_threshold | 13.4225 |
| euclidean_f1 | 0.7068 |
| euclidean_f1_threshold | 17.6348 |
| euclidean_precision | 0.5756 |
| euclidean_recall | 0.9154 |
| euclidean_ap | 0.7303 |
| max_accuracy | 0.6772 |
| max_accuracy_threshold | 228.4041 |
| max_f1 | 0.7187 |
| max_f1_threshold | 232.6788 |
| max_precision | 0.611 |
| max_recall | 0.9154 |
| max_ap | 0.7392 |
Training Details
Training Dataset
stanfordnlp/snli
- Dataset: stanfordnlp/snli at cdb5c3d
- Size: 314,315 training samples
- Columns:
sentence1,sentence2, andlabel - Approximate statistics based on the first 1000 samples:
sentence1 sentence2 label type string string int details - min: 5 tokens
- mean: 16.62 tokens
- max: 62 tokens
- min: 4 tokens
- mean: 9.46 tokens
- max: 29 tokens
- 0: 100.00%
- Samples:
sentence1 sentence2 label A person on a horse jumps over a broken down airplane.A person is outdoors, on a horse.0Children smiling and waving at cameraThere are children present0A boy is jumping on skateboard in the middle of a red bridge.The boy does a skateboarding trick.0 - Loss:
MultipleNegativesRankingLosswith these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Evaluation Dataset
sentence-transformers/stsb
- Dataset: sentence-transformers/stsb at ab7a5ac
- Size: 1,500 evaluation samples
- Columns:
sentence1,sentence2, andscore - Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 5 tokens
- mean: 14.77 tokens
- max: 45 tokens
- min: 6 tokens
- mean: 14.74 tokens
- max: 49 tokens
- min: 0.0
- mean: 0.47
- max: 1.0
- Samples:
sentence1 sentence2 score A man with a hard hat is dancing.A man wearing a hard hat is dancing.1.0A young child is riding a horse.A child is riding a horse.0.95A man is feeding a mouse to a snake.The man is feeding a mouse to the snake.1.0 - Loss:
MultipleNegativesRankingLosswith these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsper_device_train_batch_size: 64per_device_eval_batch_size: 64learning_rate: 7.5e-05num_train_epochs: 2warmup_ratio: 0.25save_safetensors: Falsefp16: Truepush_to_hub: Truehub_model_id: bobox/DeBERTaV3-xSmall-SentenceTransformer-0.03nhub_strategy: checkpoint
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 64per_device_eval_batch_size: 64per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonelearning_rate: 7.5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 2max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.25warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Falsesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Trueresume_from_checkpoint: Nonehub_model_id: bobox/DeBERTaV3-xSmall-SentenceTransformer-0.03nhub_strategy: checkpointhub_private_repo: Falsehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseeval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falsebatch_sampler: batch_samplermulti_dataset_batch_sampler: proportional
Training Logs
| Epoch | Step | Training Loss | loss | max_ap | sts-dev_spearman_cosine |
|---|---|---|---|---|---|
| None | 0 | - | 3.7624 | 0.5721 | 0.4168 |
| 0.0501 | 246 | 3.3825 | - | - | - |
| 0.1002 | 492 | 1.8307 | - | - | - |
| 0.1500 | 737 | - | 1.0084 | 0.7024 | - |
| 0.1502 | 738 | 1.055 | - | - | - |
| 0.2003 | 984 | 0.7961 | - | - | - |
| 0.2504 | 1230 | 0.6859 | - | - | - |
| 0.3001 | 1474 | - | 0.7410 | 0.7191 | - |
| 0.3005 | 1476 | 0.5914 | - | - | - |
| 0.3506 | 1722 | 0.5324 | - | - | - |
| 0.4007 | 1968 | 0.5077 | - | - | - |
| 0.4501 | 2211 | - | 0.6152 | 0.7144 | - |
| 0.4507 | 2214 | 0.4647 | - | - | - |
| 0.5008 | 2460 | 0.4443 | - | - | - |
| 0.5509 | 2706 | 0.4169 | - | - | - |
| 0.6002 | 2948 | - | 0.5820 | 0.7207 | - |
| 0.6010 | 2952 | 0.3831 | - | - | - |
| 0.6511 | 3198 | 0.393 | - | - | - |
| 0.7011 | 3444 | 0.3654 | - | - | - |
| 0.7502 | 3685 | - | 0.5284 | 0.7264 | - |
| 0.7512 | 3690 | 0.344 | - | - | - |
| 0.8013 | 3936 | 0.3336 | - | - | - |
| 0.8514 | 4182 | 0.3382 | - | - | - |
| 0.9002 | 4422 | - | 0.4911 | 0.7294 | - |
| 0.9015 | 4428 | 0.3182 | - | - | - |
| 0.9515 | 4674 | 0.3213 | - | - | - |
| 1.0016 | 4920 | 0.3032 | - | - | - |
| 1.0503 | 5159 | - | 0.4777 | 0.7325 | - |
| 1.0517 | 5166 | 0.2526 | - | - | - |
| 1.1018 | 5412 | 0.2652 | - | - | - |
| 1.1519 | 5658 | 0.2538 | - | - | - |
| 1.2003 | 5896 | - | 0.4569 | 0.7331 | - |
| 1.2020 | 5904 | 0.2454 | - | - | - |
| 1.2520 | 6150 | 0.2528 | - | - | - |
| 1.3021 | 6396 | 0.2448 | - | - | - |
| 1.3504 | 6633 | - | 0.4334 | 0.7370 | - |
| 1.3522 | 6642 | 0.2282 | - | - | - |
| 1.4023 | 6888 | 0.2295 | - | - | - |
| 1.4524 | 7134 | 0.2313 | - | - | - |
| 1.5004 | 7370 | - | 0.4237 | 0.7342 | - |
| 1.5024 | 7380 | 0.2218 | - | - | - |
| 1.5525 | 7626 | 0.2246 | - | - | - |
| 1.6026 | 7872 | 0.218 | - | - | - |
| 1.6504 | 8107 | - | 0.4102 | 0.7388 | - |
| 1.6527 | 8118 | 0.2095 | - | - | - |
| 1.7028 | 8364 | 0.2114 | - | - | - |
| 1.7529 | 8610 | 0.2063 | - | - | - |
| 1.8005 | 8844 | - | 0.4075 | 0.7370 | - |
| 1.8029 | 8856 | 0.1968 | - | - | - |
| 1.8530 | 9102 | 0.2061 | - | - | - |
| 1.9031 | 9348 | 0.2089 | - | - | - |
| 1.9505 | 9581 | - | 0.3978 | 0.7395 | - |
| 1.9532 | 9594 | 0.2005 | - | - | - |
| 2.0 | 9824 | - | 0.3963 | 0.7392 | - |
| None | 0 | - | 1.5506 | - | 0.8070 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.0
- Transformers: 4.41.2
- PyTorch: 2.3.0+cu121
- Accelerate: 0.30.1
- Datasets: 2.19.2
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 1
Model tree for bobox/DeBERTaV3-xSmall-SentenceTransformer-0.03
Base model
microsoft/deberta-v3-xsmallEvaluation results
- Pearson Cosine on sts devself-reported0.797
- Spearman Cosine on sts devself-reported0.807
- Pearson Manhattan on sts devself-reported0.808
- Spearman Manhattan on sts devself-reported0.807
- Pearson Euclidean on sts devself-reported0.808
- Spearman Euclidean on sts devself-reported0.807
- Pearson Dot on sts devself-reported0.703
- Spearman Dot on sts devself-reported0.691
- Pearson Max on sts devself-reported0.808
- Spearman Max on sts devself-reported0.807