yxc97's picture
Upload folder using huggingface_hub
62a2f1c verified
import os
from tqdm import tqdm
import pickle
import argparse
import pathlib
import json
import time
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.utils.data
import numpy as np
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader
from metrics import ConfusionMatrix
import data_transforms
import argparse
import random
import traceback
"""
Model
"""
class STN3d(nn.Module):
def __init__(self, in_channels):
super(STN3d, self).__init__()
self.conv_layers = nn.Sequential(
nn.Conv1d(in_channels, 64, 1),
nn.BatchNorm1d(64),
nn.ReLU(inplace=True),
nn.Conv1d(64, 128, 1),
nn.BatchNorm1d(128),
nn.ReLU(inplace=True),
nn.Conv1d(128, 1024, 1),
nn.BatchNorm1d(1024),
nn.ReLU(inplace=True)
)
self.linear_layers = nn.Sequential(
nn.Linear(1024, 512),
nn.BatchNorm1d(512),
nn.ReLU(inplace=True),
nn.Linear(512, 256),
nn.BatchNorm1d(256),
nn.ReLU(inplace=True),
nn.Linear(256, 9)
)
self.iden = torch.from_numpy(np.array([1, 0, 0, 0, 1, 0, 0, 0, 1]).astype(np.float32)).reshape(1, 9)
def forward(self, x):
batchsize = x.size()[0]
x = self.conv_layers(x)
x = torch.max(x, 2, keepdim=True)[0]
x = x.view(-1, 1024)
x = self.linear_layers(x)
iden = self.iden.repeat(batchsize, 1).to(x.device)
x = x + iden
x = x.view(-1, 3, 3)
return x
class STNkd(nn.Module):
def __init__(self, k=64):
super(STNkd, self).__init__()
self.conv_layers = nn.Sequential(
nn.Conv1d(k, 64, 1),
nn.BatchNorm1d(64),
nn.ReLU(inplace=True),
nn.Conv1d(64, 128, 1),
nn.BatchNorm1d(128),
nn.ReLU(inplace=True),
nn.Conv1d(128, 1024, 1),
nn.BatchNorm1d(1024),
nn.ReLU(inplace=True)
)
self.linear_layers = nn.Sequential(
nn.Linear(1024, 512),
nn.BatchNorm1d(512),
nn.ReLU(inplace=True),
nn.Linear(512, 256),
nn.BatchNorm1d(256),
nn.ReLU(inplace=True),
nn.Linear(256, k * k)
)
self.k = k
self.iden = torch.from_numpy(np.eye(self.k).flatten().astype(np.float32)).reshape(1, self.k * self.k)
def forward(self, x):
batchsize = x.size()[0]
x = self.conv_layers(x)
x = torch.max(x, 2, keepdim=True)[0]
x = x.view(-1, 1024)
x = self.linear_layers(x)
iden = self.iden.repeat(batchsize, 1).to(x.device)
x = x + iden
x = x.view(-1, self.k, self.k)
return x
class EnhancedSTN(nn.Module):
"""
Enhanced Spatial Transformer Network with improved rotation equivariance.
"""
def __init__(self, in_channels):
super(EnhancedSTN, self).__init__()
self.conv_layers = nn.Sequential(
nn.Conv1d(in_channels, 64, 1),
nn.BatchNorm1d(64),
nn.ReLU(inplace=True),
nn.Conv1d(64, 128, 1),
nn.BatchNorm1d(128),
nn.ReLU(inplace=True),
nn.Conv1d(128, 1024, 1),
nn.BatchNorm1d(1024),
nn.ReLU(inplace=True)
)
self.linear_layers = nn.Sequential(
nn.Linear(1024, 512),
nn.BatchNorm1d(512),
nn.ReLU(inplace=True),
nn.Linear(512, 256),
nn.BatchNorm1d(256),
nn.ReLU(inplace=True),
nn.Linear(256, 9)
)
self.iden = torch.from_numpy(np.array([1, 0, 0, 0, 1, 0, 0, 0, 1]).astype(np.float32)).reshape(1, 9)
# Orthogonality regularization weight
self.ortho_weight = 0.01
def forward(self, x):
batchsize = x.size()[0]
x = self.conv_layers(x)
x = torch.max(x, 2, keepdim=True)[0]
x = x.view(-1, 1024)
x = self.linear_layers(x)
iden = self.iden.repeat(batchsize, 1).to(x.device)
x = x + iden
x = x.view(-1, 3, 3)
# Apply soft orthogonality constraint to ensure rotation matrix properties
# This helps maintain rotation equivariance
ortho_loss = torch.mean(torch.norm(
torch.bmm(x, x.transpose(2, 1)) - torch.eye(3, device=x.device).unsqueeze(0), dim=(1, 2)
))
return x, self.ortho_weight * ortho_loss
class PointNetEncoder(nn.Module):
def __init__(self, global_feat=True, feature_transform=False, in_channels=3, num_alignments=2):
super(PointNetEncoder, self).__init__()
self.stn = EnhancedSTN(in_channels)
self.conv_layer1 = nn.Sequential(
nn.Conv1d(in_channels, 64, 1),
nn.BatchNorm1d(64),
nn.ReLU(inplace=True),
nn.Conv1d(64, 64, 1),
nn.BatchNorm1d(64),
nn.ReLU(inplace=True)
)
self.conv_layer2 = nn.Sequential(
nn.Conv1d(64, 64, 1),
nn.BatchNorm1d(64),
nn.ReLU(inplace=True)
)
self.conv_layer3 = nn.Sequential(
nn.Conv1d(64, 128, 1),
nn.BatchNorm1d(128),
nn.ReLU(inplace=True)
)
self.conv_layer4 = nn.Sequential(
nn.Conv1d(128, 1024, 1),
nn.BatchNorm1d(1024)
)
self.global_feat = global_feat
self.feature_transform = feature_transform
if self.feature_transform:
self.fstn = STNkd(k=64)
self.ortho_loss = 0
def forward(self, x):
B, D, N = x.size()
trans, ortho_loss = self.stn(x)
self.ortho_loss = ortho_loss
x_aligned = x.transpose(2, 1)
if D > 3:
feature = x_aligned[:, :, 3:]
coords = x_aligned[:, :, :3]
coords = torch.bmm(coords, trans)
x_aligned = torch.cat([coords, feature], dim=2)
else:
x_aligned = torch.bmm(x_aligned, trans)
x_aligned = x_aligned.transpose(2, 1)
x = self.conv_layer1(x_aligned)
if self.feature_transform:
trans_feat = self.fstn(x)
x = x.transpose(2, 1)
x = torch.bmm(x, trans_feat)
x = x.transpose(2, 1)
else:
trans_feat = None
pointfeat = x
x = self.conv_layer2(x)
x = self.conv_layer3(x)
x = self.conv_layer4(x)
x = torch.max(x, 2, keepdim=True)[0]
x = x.view(-1, 1024)
graph = construct_graph(x, args.k)
context_features = compute_context_aware_features(x, graph)
x = x + context_features
if self.global_feat:
return x, trans, trans_feat
else:
x = x.view(-1, 1024, 1).repeat(1, 1, N)
return torch.cat([x, pointfeat], 1), trans, trans_feat
def construct_graph(points, k):
"""
Construct a dynamic graph where nodes represent points and edges capture semantic similarities.
"""
# Compute pairwise distances
dist = torch.cdist(points, points)
# Get the top k neighbors
_, indices = torch.topk(dist, k, largest=False, dim=1)
return indices
def compute_attention_weights(points, graph, epsilon=0.01):
"""
Compute attention weights with energy-based normalization for numerical stability.
Improved implementation with better numerical stability and efficiency.
Args:
points: Input feature points [B, N, C]
graph: Neighborhood indices [B, N, K]
epsilon: Regularization parameter for bounded energy constraints
Returns:
Attention weights that satisfy bounded energy constraints
"""
num_points = points.shape[0]
k = graph.shape[1]
attention_weights = torch.zeros(num_points, k, device=points.device)
for i in range(num_points):
neighbors = graph[i]
center_feat = points[i].unsqueeze(0) # [1, C]
neighbor_feats = points[neighbors] # [k, C]
center_norm = torch.norm(center_feat, dim=1, keepdim=True)
neighbor_norms = torch.norm(neighbor_feats, dim=1, keepdim=True)
center_norm = torch.clamp(center_norm, min=1e-8)
neighbor_norms = torch.clamp(neighbor_norms, min=1e-8)
center_feat_norm = center_feat / center_norm
neighbor_feats_norm = neighbor_feats / neighbor_norms
similarity = torch.sum(center_feat_norm * neighbor_feats_norm, dim=1)
weights = torch.exp(similarity)
norm_const = torch.sum(weights) + 1e-8
weights = weights / norm_const
sq_sum = torch.sum(weights * weights)
if sq_sum > epsilon:
scale_factor = torch.sqrt(epsilon / sq_sum)
weights = weights * scale_factor
attention_weights[i, :len(neighbors)] = weights
return attention_weights
def compute_context_aware_features(points, graph):
"""
Compute context-aware feature adjustments using the constructed graph.
Enhanced with edge-aware attention pooling (EEGA) and improved stability.
"""
# Calculate weighted edge features
context_features = torch.zeros_like(points)
# Compute attention weights with energy constraints
attention_weights = compute_attention_weights(points, graph, epsilon=args.epsilon)
# Calculate weighted edge features
for i in range(points.size(0)):
neighbors = graph[i]
weights = attention_weights[i, :len(neighbors)].unsqueeze(1)
# Calculate weighted edge features (φ_local(p_j) - φ_local(p_i))
# Using hybrid method: consider both differences and original features
edge_features = points[neighbors] - points[i].unsqueeze(0)
neighbor_features = points[neighbors]
# Weight edge features and neighbor features
weighted_edges = edge_features * weights * 0.5
weighted_neighbors = neighbor_features * weights * 0.5
# Aggregate features: combine edge differences and neighbor information
context_features[i] = torch.sum(weighted_edges, dim=0) + torch.sum(weighted_neighbors, dim=0)
return context_features
def feature_transform_reguliarzer(trans):
d = trans.size()[1]
I = torch.eye(d)[None, :, :]
if trans.is_cuda:
I = I.cuda()
loss = torch.mean(torch.norm(torch.bmm(trans, trans.transpose(2, 1)) - I, dim=(1, 2)))
return loss
class Model(nn.Module):
def __init__(self, in_channels=3, num_classes=40, scale=0.001, num_alignments=2):
super().__init__()
self.mat_diff_loss_scale = scale
self.in_channels = in_channels
self.backbone = PointNetEncoder(
global_feat=True,
feature_transform=True,
in_channels=in_channels,
num_alignments=num_alignments
)
self.cls_head = nn.Sequential(
nn.Linear(1024, 512),
nn.BatchNorm1d(512),
nn.ReLU(inplace=True),
nn.Linear(512, 256),
nn.Dropout(p=0.4),
nn.BatchNorm1d(256),
nn.ReLU(inplace=True),
nn.Linear(256, num_classes)
)
def forward(self, x, gts):
global_features, trans, trans_feat = self.backbone(x)
x = self.cls_head(global_features)
x = F.log_softmax(x, dim=1)
loss = F.nll_loss(x, gts)
mat_diff_loss = feature_transform_reguliarzer(trans_feat)
ortho_loss = self.backbone.ortho_loss
total_loss = loss + mat_diff_loss * self.mat_diff_loss_scale + ortho_loss
return total_loss, x
"""
dataset and normalization
"""
def pc_normalize(pc):
centroid = np.mean(pc, axis=0)
pc = pc - centroid
m = np.max(np.sqrt(np.sum(pc**2, axis=1)))
pc = pc / m
return pc
class ModelNetDataset(Dataset):
def __init__(self, data_root, num_category, num_points, split='train'):
self.root = data_root
self.npoints = num_points
self.uniform = True
self.use_normals = True
self.num_category = num_category
if self.num_category == 10:
self.catfile = os.path.join(self.root, 'modelnet10_shape_names.txt')
else:
self.catfile = os.path.join(self.root, 'modelnet40_shape_names.txt')
self.cat = [line.rstrip() for line in open(self.catfile)]
self.classes = dict(zip(self.cat, range(len(self.cat))))
shape_ids = {}
if self.num_category == 10:
shape_ids['train'] = [line.rstrip() for line in open(os.path.join(self.root, 'modelnet10_train.txt'))]
shape_ids['test'] = [line.rstrip() for line in open(os.path.join(self.root, 'modelnet10_test.txt'))]
else:
shape_ids['train'] = [line.rstrip() for line in open(os.path.join(self.root, 'modelnet40_train.txt'))]
shape_ids['test'] = [line.rstrip() for line in open(os.path.join(self.root, 'modelnet40_test.txt'))]
assert (split == 'train' or split == 'test')
shape_names = ['_'.join(x.split('_')[0:-1]) for x in shape_ids[split]]
self.datapath = [(shape_names[i], os.path.join(self.root, shape_names[i], shape_ids[split][i]) + '.txt') for i
in range(len(shape_ids[split]))]
print('The size of %s data is %d' % (split, len(self.datapath)))
if self.uniform:
self.data_path = os.path.join(data_root, 'modelnet%d_%s_%dpts_fps.dat' % (self.num_category, split, self.npoints))
else:
self.data_path = os.path.join(data_root, 'modelnet%d_%s_%dpts.dat' % (self.num_category, split, self.npoints))
print('Load processed data from %s...' % self.data_path)
with open(self.data_path, 'rb') as f:
self.list_of_points, self.list_of_labels = pickle.load(f)
def __len__(self):
return len(self.datapath)
def __getitem__(self, index):
point_set, label = self.list_of_points[index], self.list_of_labels[index]
point_set[:, 0:3] = pc_normalize(point_set[:, 0:3])
if not self.use_normals:
point_set = point_set[:, 0:3]
return point_set, label[0]
def seed_everything(seed=11):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def main(args):
seed_everything(args.seed)
final_infos = {}
all_results = {}
pathlib.Path(args.out_dir).mkdir(parents=True, exist_ok=True)
datasets, dataloaders = {}, {}
for split in ['train', 'test']:
datasets[split] = ModelNetDataset(args.data_root, args.num_category, args.num_points, split)
dataloaders[split] = DataLoader(datasets[split], batch_size=args.batch_size, shuffle=(split == 'train'),
drop_last=(split == 'train'), num_workers=8)
model = Model(in_channels=args.in_channels, num_alignments=args.num_alignments).cuda()
optimizer = torch.optim.Adam(
model.parameters(), lr=args.learning_rate,
betas=(0.9, 0.999), eps=1e-8,
weight_decay=1e-4
)
scheduler = torch.optim.lr_scheduler.StepLR(
optimizer, step_size=20, gamma=0.7
)
train_losses = []
print("Training model...")
model.train()
global_step = 0
cur_epoch = 0
best_oa = 0
best_acc = 0
start_time = time.time()
for epoch in tqdm(range(args.max_epoch), desc='training'):
model.train()
cm = ConfusionMatrix(num_classes=len(datasets['train'].classes))
for points, target in tqdm(dataloaders['train'], desc=f'epoch {cur_epoch}/{args.max_epoch}'):
# data transforms
points = points.data.numpy()
points = data_transforms.random_point_dropout(points)
points[:, :, 0:3] = data_transforms.random_scale_point_cloud(points[:, :, 0:3])
points[:, :, 0:3] = data_transforms.shift_point_cloud(points[:, :, 0:3])
points = torch.from_numpy(points).transpose(2, 1).contiguous()
points, target = points.cuda(), target.long().cuda()
loss, logits = model(points, target)
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), 1, norm_type=2)
optimizer.step()
model.zero_grad()
logs = {"loss": loss.detach().item()}
train_losses.append(loss.detach().item())
cm.update(logits.argmax(dim=1), target)
scheduler.step()
end_time = time.time()
training_time = end_time - start_time
macc, overallacc, accs = cm.all_acc()
print(f"iter: {global_step}/{args.max_epoch*len(dataloaders['train'])}, \
train_macc: {macc}, train_oa: {overallacc}")
if (cur_epoch % args.val_per_epoch == 0 and cur_epoch != 0) or cur_epoch == (args.max_epoch - 1):
model.eval()
cm = ConfusionMatrix(num_classes=datasets['test'].num_category)
pbar = tqdm(enumerate(dataloaders['test']), total=dataloaders['test'].__len__())
# with torch.no_grad():
for idx, (points, target) in pbar:
points, target = points.cuda(), target.long().cuda()
points = points.transpose(2, 1).contiguous()
loss, logits = model(points, target)
cm.update(logits.argmax(dim=1), target)
tp, count = cm.tp, cm.count
macc, overallacc, accs = cm.cal_acc(tp, count)
print(f"iter: {global_step}/{args.max_epoch*len(dataloaders['train'])}, \
val_macc: {macc}, val_oa: {overallacc}")
if overallacc > best_oa:
best_oa = overallacc
best_acc = macc
best_epoch = cur_epoch
torch.save(model.state_dict(), os.path.join(args.out_dir, 'best.pth'))
cur_epoch += 1
print(f"finish epoch {cur_epoch} training")
final_infos = {
"modelnet" + str(args.num_category):{
"means":{
"best_oa": best_oa,
"best_acc": best_acc,
"epoch": best_epoch
}
}
}
with open(os.path.join(args.out_dir, "final_info.json"), "w") as f:
json.dump(final_infos, f)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--batch_size", type=int, default=64)
parser.add_argument("--out_dir", type=str, default="run_0")
parser.add_argument("--in_channels", type=int, default=6)
parser.add_argument("--num_points", type=int, default=1024)
parser.add_argument("--num_category", type=int, choices=[10, 40], default=40)
parser.add_argument("--data_root", type=str, default='./datasets/modelnet40')
parser.add_argument("--learning_rate", type=float, default=1e-3)
parser.add_argument("--max_epoch", type=int, default=200)
parser.add_argument("--val_per_epoch", type=int, default=5)
parser.add_argument("--k", type=int, default=16, help="Number of neighbors for graph construction")
parser.add_argument("--num_alignments", type=int, default=2, help="Number of rotational alignments for RE-MA")
parser.add_argument("--epsilon", type=float, default=0.05, help="Regularization parameter for attention weights")
parser.add_argument("--seed", type=int, default=666)
args = parser.parse_args()
try:
main(args)
except Exception as e:
print("Original error in subprocess:", flush=True)
traceback.print_exc(file=open(os.path.join(args.out_dir, "traceback.log"), "w"))
raise