File size: 20,052 Bytes
62a2f1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
import os
from tqdm import tqdm
import pickle
import argparse
import pathlib
import json
import time
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.utils.data
import numpy as np
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader
from metrics import ConfusionMatrix
import data_transforms
import argparse
import random
import traceback

"""
Model
"""
class STN3d(nn.Module):
    def __init__(self, in_channels):
        super(STN3d, self).__init__()
        self.conv_layers = nn.Sequential(
            nn.Conv1d(in_channels, 64, 1),
            nn.BatchNorm1d(64),
            nn.ReLU(inplace=True),
            nn.Conv1d(64, 128, 1),
            nn.BatchNorm1d(128),
            nn.ReLU(inplace=True),
            nn.Conv1d(128, 1024, 1),
            nn.BatchNorm1d(1024),
            nn.ReLU(inplace=True)
        )
        self.linear_layers = nn.Sequential(
            nn.Linear(1024, 512),
            nn.BatchNorm1d(512),
            nn.ReLU(inplace=True),
            nn.Linear(512, 256),
            nn.BatchNorm1d(256),
            nn.ReLU(inplace=True),
            nn.Linear(256, 9)
        )
        self.iden = torch.from_numpy(np.array([1, 0, 0, 0, 1, 0, 0, 0, 1]).astype(np.float32)).reshape(1, 9)

    def forward(self, x):
        batchsize = x.size()[0]
        x = self.conv_layers(x)
        x = torch.max(x, 2, keepdim=True)[0]
        x = x.view(-1, 1024)

        x = self.linear_layers(x)
        iden = self.iden.repeat(batchsize, 1).to(x.device)
        x = x + iden
        x = x.view(-1, 3, 3)
        return x


class STNkd(nn.Module):
    def __init__(self, k=64):
        super(STNkd, self).__init__()
        self.conv_layers = nn.Sequential(
            nn.Conv1d(k, 64, 1),
            nn.BatchNorm1d(64),
            nn.ReLU(inplace=True),
            nn.Conv1d(64, 128, 1),
            nn.BatchNorm1d(128),
            nn.ReLU(inplace=True),
            nn.Conv1d(128, 1024, 1),
            nn.BatchNorm1d(1024),
            nn.ReLU(inplace=True)
        )
        self.linear_layers = nn.Sequential(
            nn.Linear(1024, 512),
            nn.BatchNorm1d(512),
            nn.ReLU(inplace=True),
            nn.Linear(512, 256),
            nn.BatchNorm1d(256),
            nn.ReLU(inplace=True),
            nn.Linear(256, k * k)
        )
        self.k = k
        self.iden = torch.from_numpy(np.eye(self.k).flatten().astype(np.float32)).reshape(1, self.k * self.k)

    def forward(self, x):
        batchsize = x.size()[0]
        x = self.conv_layers(x)
        x = torch.max(x, 2, keepdim=True)[0]
        x = x.view(-1, 1024)
        x = self.linear_layers(x)
        iden = self.iden.repeat(batchsize, 1).to(x.device)
        x = x + iden
        x = x.view(-1, self.k, self.k)
        return x


class EnhancedSTN(nn.Module):
    """
    Enhanced Spatial Transformer Network with improved rotation equivariance.
    """
    def __init__(self, in_channels):
        super(EnhancedSTN, self).__init__()
        self.conv_layers = nn.Sequential(
            nn.Conv1d(in_channels, 64, 1),
            nn.BatchNorm1d(64),
            nn.ReLU(inplace=True),
            nn.Conv1d(64, 128, 1),
            nn.BatchNorm1d(128),
            nn.ReLU(inplace=True),
            nn.Conv1d(128, 1024, 1),
            nn.BatchNorm1d(1024),
            nn.ReLU(inplace=True)
        )
        self.linear_layers = nn.Sequential(
            nn.Linear(1024, 512),
            nn.BatchNorm1d(512),
            nn.ReLU(inplace=True),
            nn.Linear(512, 256),
            nn.BatchNorm1d(256),
            nn.ReLU(inplace=True),
            nn.Linear(256, 9)
        )
        self.iden = torch.from_numpy(np.array([1, 0, 0, 0, 1, 0, 0, 0, 1]).astype(np.float32)).reshape(1, 9)
        
        # Orthogonality regularization weight
        self.ortho_weight = 0.01

    def forward(self, x):
        batchsize = x.size()[0]
        x = self.conv_layers(x)
        x = torch.max(x, 2, keepdim=True)[0]
        x = x.view(-1, 1024)

        x = self.linear_layers(x)
        iden = self.iden.repeat(batchsize, 1).to(x.device)
        x = x + iden
        x = x.view(-1, 3, 3)
        
        # Apply soft orthogonality constraint to ensure rotation matrix properties
        # This helps maintain rotation equivariance
        ortho_loss = torch.mean(torch.norm(
            torch.bmm(x, x.transpose(2, 1)) - torch.eye(3, device=x.device).unsqueeze(0), dim=(1, 2)
        ))
        
        return x, self.ortho_weight * ortho_loss

class PointNetEncoder(nn.Module):
    def __init__(self, global_feat=True, feature_transform=False, in_channels=3, num_alignments=2):
        super(PointNetEncoder, self).__init__()

        self.stn = EnhancedSTN(in_channels)
        

        self.conv_layer1 = nn.Sequential(
            nn.Conv1d(in_channels, 64, 1),
            nn.BatchNorm1d(64),
            nn.ReLU(inplace=True),
            nn.Conv1d(64, 64, 1),
            nn.BatchNorm1d(64),
            nn.ReLU(inplace=True)
        )
        self.conv_layer2 = nn.Sequential(
            nn.Conv1d(64, 64, 1),
            nn.BatchNorm1d(64),
            nn.ReLU(inplace=True)
        )
        self.conv_layer3 = nn.Sequential(
            nn.Conv1d(64, 128, 1),
            nn.BatchNorm1d(128),
            nn.ReLU(inplace=True)
        )
        self.conv_layer4 = nn.Sequential(
            nn.Conv1d(128, 1024, 1),
            nn.BatchNorm1d(1024)
        )
        self.global_feat = global_feat
        self.feature_transform = feature_transform
        if self.feature_transform:
            self.fstn = STNkd(k=64)
        

        self.ortho_loss = 0

    def forward(self, x):
        B, D, N = x.size()
        
        trans, ortho_loss = self.stn(x)
        self.ortho_loss = ortho_loss
        
        x_aligned = x.transpose(2, 1)
        if D > 3:
            feature = x_aligned[:, :, 3:]
            coords = x_aligned[:, :, :3]
            coords = torch.bmm(coords, trans)
            x_aligned = torch.cat([coords, feature], dim=2)
        else:
            x_aligned = torch.bmm(x_aligned, trans)
        x_aligned = x_aligned.transpose(2, 1)
        

        x = self.conv_layer1(x_aligned)
        
        if self.feature_transform:
            trans_feat = self.fstn(x)
            x = x.transpose(2, 1)
            x = torch.bmm(x, trans_feat)
            x = x.transpose(2, 1)
        else:
            trans_feat = None

        pointfeat = x
        x = self.conv_layer2(x)
        x = self.conv_layer3(x)
        x = self.conv_layer4(x)
        x = torch.max(x, 2, keepdim=True)[0]
        x = x.view(-1, 1024)
        
        graph = construct_graph(x, args.k)
        context_features = compute_context_aware_features(x, graph)
        x = x + context_features
        
        if self.global_feat:
            return x, trans, trans_feat
        else:
            x = x.view(-1, 1024, 1).repeat(1, 1, N)
            return torch.cat([x, pointfeat], 1), trans, trans_feat



def construct_graph(points, k):
    """
    Construct a dynamic graph where nodes represent points and edges capture semantic similarities.
    """
    # Compute pairwise distances
    dist = torch.cdist(points, points)
    # Get the top k neighbors
    _, indices = torch.topk(dist, k, largest=False, dim=1)
    return indices

def compute_attention_weights(points, graph, epsilon=0.01):
    """
    Compute attention weights with energy-based normalization for numerical stability.
    Improved implementation with better numerical stability and efficiency.
    
    Args:
        points: Input feature points [B, N, C]
        graph: Neighborhood indices [B, N, K]
        epsilon: Regularization parameter for bounded energy constraints
        
    Returns:
        Attention weights that satisfy bounded energy constraints
    """
    num_points = points.shape[0]
    k = graph.shape[1]
    attention_weights = torch.zeros(num_points, k, device=points.device)
    
    for i in range(num_points):
        neighbors = graph[i]
        
        center_feat = points[i].unsqueeze(0)  # [1, C]
        neighbor_feats = points[neighbors]     # [k, C]
        
        center_norm = torch.norm(center_feat, dim=1, keepdim=True)
        neighbor_norms = torch.norm(neighbor_feats, dim=1, keepdim=True)
        
        center_norm = torch.clamp(center_norm, min=1e-8)
        neighbor_norms = torch.clamp(neighbor_norms, min=1e-8)
        
        center_feat_norm = center_feat / center_norm
        neighbor_feats_norm = neighbor_feats / neighbor_norms
        
        similarity = torch.sum(center_feat_norm * neighbor_feats_norm, dim=1)
        
        weights = torch.exp(similarity)
        
        norm_const = torch.sum(weights) + 1e-8
        weights = weights / norm_const
        
        sq_sum = torch.sum(weights * weights)
        if sq_sum > epsilon:
            scale_factor = torch.sqrt(epsilon / sq_sum)
            weights = weights * scale_factor
            
        attention_weights[i, :len(neighbors)] = weights
        
    return attention_weights

def compute_context_aware_features(points, graph):
    """
    Compute context-aware feature adjustments using the constructed graph.
    Enhanced with edge-aware attention pooling (EEGA) and improved stability.
    """
    # Calculate weighted edge features
    context_features = torch.zeros_like(points)
    
    # Compute attention weights with energy constraints
    attention_weights = compute_attention_weights(points, graph, epsilon=args.epsilon)
    
    # Calculate weighted edge features
    for i in range(points.size(0)):
        neighbors = graph[i]
        weights = attention_weights[i, :len(neighbors)].unsqueeze(1)
        
        # Calculate weighted edge features (φ_local(p_j) - φ_local(p_i))
        # Using hybrid method: consider both differences and original features
        edge_features = points[neighbors] - points[i].unsqueeze(0)
        neighbor_features = points[neighbors]
        
        # Weight edge features and neighbor features
        weighted_edges = edge_features * weights * 0.5
        weighted_neighbors = neighbor_features * weights * 0.5
        
        # Aggregate features: combine edge differences and neighbor information
        context_features[i] = torch.sum(weighted_edges, dim=0) + torch.sum(weighted_neighbors, dim=0)
    
    return context_features

def feature_transform_reguliarzer(trans):
    d = trans.size()[1]
    I = torch.eye(d)[None, :, :]
    if trans.is_cuda:
        I = I.cuda()
    loss = torch.mean(torch.norm(torch.bmm(trans, trans.transpose(2, 1)) - I, dim=(1, 2)))
    return loss


class Model(nn.Module):
    def __init__(self, in_channels=3, num_classes=40, scale=0.001, num_alignments=2):
        super().__init__()
        self.mat_diff_loss_scale = scale
        self.in_channels = in_channels
        self.backbone = PointNetEncoder(
            global_feat=True, 
            feature_transform=True, 
            in_channels=in_channels,
            num_alignments=num_alignments
        )
        
        self.cls_head = nn.Sequential(
            nn.Linear(1024, 512),
            nn.BatchNorm1d(512),
            nn.ReLU(inplace=True),
            nn.Linear(512, 256),
            nn.Dropout(p=0.4),
            nn.BatchNorm1d(256),
            nn.ReLU(inplace=True),
            nn.Linear(256, num_classes)
        )
    
    def forward(self, x, gts):

        global_features, trans, trans_feat = self.backbone(x)

        x = self.cls_head(global_features)
        x = F.log_softmax(x, dim=1)
        
        loss = F.nll_loss(x, gts)
        mat_diff_loss = feature_transform_reguliarzer(trans_feat)
        ortho_loss = self.backbone.ortho_loss
        
        total_loss = loss + mat_diff_loss * self.mat_diff_loss_scale + ortho_loss
        
        return total_loss, x


"""
dataset and normalization
"""
def pc_normalize(pc):
    centroid = np.mean(pc, axis=0)
    pc = pc - centroid
    m = np.max(np.sqrt(np.sum(pc**2, axis=1)))
    pc = pc / m
    return pc


class ModelNetDataset(Dataset):
    def __init__(self, data_root, num_category, num_points, split='train'):
        self.root = data_root
        self.npoints = num_points
        self.uniform = True
        self.use_normals = True
        self.num_category = num_category

        if self.num_category == 10:
            self.catfile = os.path.join(self.root, 'modelnet10_shape_names.txt')
        else:
            self.catfile = os.path.join(self.root, 'modelnet40_shape_names.txt')

        self.cat = [line.rstrip() for line in open(self.catfile)]
        self.classes = dict(zip(self.cat, range(len(self.cat))))

        shape_ids = {}
        if self.num_category == 10:
            shape_ids['train'] = [line.rstrip() for line in open(os.path.join(self.root, 'modelnet10_train.txt'))]
            shape_ids['test'] = [line.rstrip() for line in open(os.path.join(self.root, 'modelnet10_test.txt'))]
        else:
            shape_ids['train'] = [line.rstrip() for line in open(os.path.join(self.root, 'modelnet40_train.txt'))]
            shape_ids['test'] = [line.rstrip() for line in open(os.path.join(self.root, 'modelnet40_test.txt'))]

        assert (split == 'train' or split == 'test')
        shape_names = ['_'.join(x.split('_')[0:-1]) for x in shape_ids[split]]
        self.datapath = [(shape_names[i], os.path.join(self.root, shape_names[i], shape_ids[split][i]) + '.txt') for i
                         in range(len(shape_ids[split]))]
        print('The size of %s data is %d' % (split, len(self.datapath)))

        if self.uniform:
            self.data_path = os.path.join(data_root, 'modelnet%d_%s_%dpts_fps.dat' % (self.num_category, split, self.npoints))
        else:
            self.data_path = os.path.join(data_root, 'modelnet%d_%s_%dpts.dat' % (self.num_category, split, self.npoints))

        print('Load processed data from %s...' % self.data_path)
        with open(self.data_path, 'rb') as f:
            self.list_of_points, self.list_of_labels = pickle.load(f)

    def __len__(self):
        return len(self.datapath)

    def __getitem__(self, index):
        point_set, label = self.list_of_points[index], self.list_of_labels[index]        
        point_set[:, 0:3] = pc_normalize(point_set[:, 0:3])
        if not self.use_normals:
            point_set = point_set[:, 0:3]
        return point_set, label[0]


def seed_everything(seed=11):
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)
    torch.backends.cudnn.deterministic = True
    torch.backends.cudnn.benchmark = False


def main(args):

    seed_everything(args.seed)

    final_infos = {}
    all_results = {}

    pathlib.Path(args.out_dir).mkdir(parents=True, exist_ok=True)
    
    datasets, dataloaders = {}, {}
    for split in ['train', 'test']:
        datasets[split] = ModelNetDataset(args.data_root, args.num_category, args.num_points, split)
        dataloaders[split] = DataLoader(datasets[split], batch_size=args.batch_size, shuffle=(split == 'train'),
                                                      drop_last=(split == 'train'), num_workers=8)
    
    model = Model(in_channels=args.in_channels, num_alignments=args.num_alignments).cuda()
    optimizer = torch.optim.Adam(
        model.parameters(), lr=args.learning_rate,
        betas=(0.9, 0.999), eps=1e-8,
        weight_decay=1e-4
    )
    scheduler = torch.optim.lr_scheduler.StepLR(
        optimizer, step_size=20, gamma=0.7
    )
    train_losses = []
    print("Training model...")
    model.train()
    global_step = 0
    cur_epoch = 0
    best_oa = 0
    best_acc = 0

    start_time = time.time()
    for epoch in tqdm(range(args.max_epoch), desc='training'):
        model.train()
        cm = ConfusionMatrix(num_classes=len(datasets['train'].classes))
        for points, target in tqdm(dataloaders['train'], desc=f'epoch {cur_epoch}/{args.max_epoch}'):
            # data transforms
            points = points.data.numpy()
            points = data_transforms.random_point_dropout(points)
            points[:, :, 0:3] = data_transforms.random_scale_point_cloud(points[:, :, 0:3])
            points[:, :, 0:3] = data_transforms.shift_point_cloud(points[:, :, 0:3])
            points = torch.from_numpy(points).transpose(2, 1).contiguous()
            
            points, target = points.cuda(), target.long().cuda()
        
            loss, logits = model(points, target)
            loss.backward()

            torch.nn.utils.clip_grad_norm_(model.parameters(), 1, norm_type=2)
            optimizer.step()
            model.zero_grad()
            
            
            logs = {"loss": loss.detach().item()}
            train_losses.append(loss.detach().item())
            cm.update(logits.argmax(dim=1), target)
        
        scheduler.step()
        end_time = time.time()
        training_time = end_time - start_time
        macc, overallacc, accs = cm.all_acc()
        print(f"iter: {global_step}/{args.max_epoch*len(dataloaders['train'])}, \
              train_macc: {macc}, train_oa: {overallacc}")
        
        if (cur_epoch % args.val_per_epoch == 0 and cur_epoch != 0) or cur_epoch == (args.max_epoch - 1):
            model.eval()
            cm = ConfusionMatrix(num_classes=datasets['test'].num_category)
            pbar = tqdm(enumerate(dataloaders['test']), total=dataloaders['test'].__len__())
            # with torch.no_grad():
            for idx, (points, target) in pbar:
                points, target = points.cuda(), target.long().cuda()
                points = points.transpose(2, 1).contiguous()
                loss, logits = model(points, target)
                cm.update(logits.argmax(dim=1), target)
                
            tp, count = cm.tp, cm.count
            macc, overallacc, accs = cm.cal_acc(tp, count)
            print(f"iter: {global_step}/{args.max_epoch*len(dataloaders['train'])}, \
            val_macc: {macc}, val_oa: {overallacc}")
                
            if overallacc > best_oa:
                best_oa = overallacc
                best_acc = macc
                best_epoch = cur_epoch
                torch.save(model.state_dict(), os.path.join(args.out_dir, 'best.pth'))
        cur_epoch += 1

        print(f"finish epoch {cur_epoch} training")

    final_infos = {
        "modelnet" + str(args.num_category):{
            "means":{
                "best_oa": best_oa,
                "best_acc": best_acc,
                "epoch": best_epoch
            }
        }
    }
    with open(os.path.join(args.out_dir, "final_info.json"), "w") as f:
        json.dump(final_infos, f)

if __name__ == "__main__":

    parser = argparse.ArgumentParser()
    parser.add_argument("--batch_size", type=int, default=64)
    parser.add_argument("--out_dir", type=str, default="run_0")
    parser.add_argument("--in_channels", type=int, default=6)
    parser.add_argument("--num_points", type=int, default=1024)
    parser.add_argument("--num_category", type=int, choices=[10, 40], default=40)
    parser.add_argument("--data_root", type=str, default='./datasets/modelnet40')
    parser.add_argument("--learning_rate", type=float, default=1e-3)
    parser.add_argument("--max_epoch", type=int, default=200)
    parser.add_argument("--val_per_epoch", type=int, default=5)
    parser.add_argument("--k", type=int, default=16, help="Number of neighbors for graph construction")
    parser.add_argument("--num_alignments", type=int, default=2, help="Number of rotational alignments for RE-MA")
    parser.add_argument("--epsilon", type=float, default=0.05, help="Regularization parameter for attention weights")
    parser.add_argument("--seed", type=int, default=666)
    args = parser.parse_args()

    try:
        main(args)
    except Exception as e:
        print("Original error in subprocess:", flush=True)
        traceback.print_exc(file=open(os.path.join(args.out_dir, "traceback.log"), "w"))
        raise