metadata
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:366717
- loss:CategoricalContrastiveLoss
widget:
- source_sentence: 科目:コンクリート。名称:免震BPL下部充填コンクリート打設手間。
sentences:
- 科目:コンクリート。名称:#F/#FLコンクリート打設手間。
- 科目:コンクリート。名称:擁壁部コンクリート打設手間。
- 科目:タイル。名称:EXP_J上床磁器質タイルA。
- source_sentence: 科目:タイル。名称:段床タイル。
sentences:
- 科目:コンクリート。名称:擁壁部コンクリート打設手間。
- 科目:タイル。名称:地流し床タイル。
- 科目:タイル。名称:#階WWC洗面台壁モザイクタイル-#。
- source_sentence: 科目:タイル。名称:屋外階段踊場タイル。
sentences:
- 科目:タイル。名称:手洗い水周りタイル(A)。
- 科目:タイル。名称:タイル出隅コーナー。
- 科目:タイル。名称:#階WWC洗面台壁モザイクタイル-#。
- source_sentence: 科目:タイル。名称:デッキ床タイル。
sentences:
- 科目:タイル。名称:昇降口床タイル張り。
- 科目:タイル。名称:床磁器質タイルA。
- 科目:タイル。名称:ピロティ柱壁タイルA。
- source_sentence: 科目:タイル。名称:床タイル。
sentences:
- 科目:タイル。名称:屋外階段踊場タイル張り。
- 科目:タイル。名称:段鼻タイル。
- 科目:コンクリート。名称:地上部コンクリート。
pipeline_tag: sentence-similarity
library_name: sentence-transformers
SentenceTransformer
This is a sentence-transformers model trained. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Detomo/cl-nagoya-sup-simcse-ja-nss-v1_0_9_1")
# Run inference
sentences = [
'科目:タイル。名称:床タイル。',
'科目:タイル。名称:屋外階段踊場タイル張り。',
'科目:タイル。名称:段鼻タイル。',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 366,717 training samples
- Columns:
sentence1,sentence2, andlabel - Approximate statistics based on the first 1000 samples:
sentence1 sentence2 label type string string int details - min: 11 tokens
- mean: 13.8 tokens
- max: 19 tokens
- min: 11 tokens
- mean: 14.78 tokens
- max: 23 tokens
- 0: ~66.70%
- 1: ~3.50%
- 2: ~29.80%
- Samples:
sentence1 sentence2 label 科目:コンクリート。名称:免震基礎天端グラウト注入。科目:コンクリート。名称:免震下部(外周基礎梁)コンクリート打設手間。0科目:コンクリート。名称:免震基礎天端グラウト注入。科目:コンクリート。名称:免震下部コンクリート打設手間。0科目:コンクリート。名称:免震基礎天端グラウト注入。科目:コンクリート。名称:免震BPL下部充填コンクリート打設手間。0 - Loss:
sentence_transformer_lib.categorical_constrastive_loss.CategoricalContrastiveLoss
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size: 256per_device_eval_batch_size: 256learning_rate: 1e-05weight_decay: 0.01warmup_ratio: 0.2fp16: True
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: noprediction_loss_only: Trueper_device_train_batch_size: 256per_device_eval_batch_size: 256per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 1e-05weight_decay: 0.01adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 3max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.2warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsehub_revision: Nonegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseliger_kernel_config: Noneeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: proportional
Training Logs
| Epoch | Step | Training Loss |
|---|---|---|
| 0.0349 | 50 | 0.0328 |
| 0.0698 | 100 | 0.036 |
| 0.1047 | 150 | 0.0357 |
| 0.1396 | 200 | 0.0324 |
| 0.1745 | 250 | 0.0335 |
| 0.2094 | 300 | 0.0354 |
| 0.2442 | 350 | 0.0322 |
| 0.2791 | 400 | 0.0321 |
| 0.3140 | 450 | 0.0273 |
| 0.3489 | 500 | 0.025 |
| 0.3838 | 550 | 0.0245 |
| 0.4187 | 600 | 0.0242 |
| 0.4536 | 650 | 0.0224 |
| 0.4885 | 700 | 0.0239 |
| 0.5234 | 750 | 0.0228 |
| 0.5583 | 800 | 0.0243 |
| 0.5932 | 850 | 0.0208 |
| 0.6281 | 900 | 0.022 |
| 0.6629 | 950 | 0.0196 |
| 0.6978 | 1000 | 0.0224 |
| 0.7327 | 1050 | 0.0177 |
| 0.7676 | 1100 | 0.0189 |
| 0.8025 | 1150 | 0.0158 |
| 0.8374 | 1200 | 0.017 |
| 0.8723 | 1250 | 0.0146 |
| 0.9072 | 1300 | 0.0144 |
| 0.9421 | 1350 | 0.0158 |
| 0.9770 | 1400 | 0.0144 |
| 1.0119 | 1450 | 0.0146 |
| 1.0468 | 1500 | 0.0115 |
| 1.0816 | 1550 | 0.0105 |
| 1.1165 | 1600 | 0.0108 |
| 1.1514 | 1650 | 0.0113 |
| 1.1863 | 1700 | 0.0109 |
| 1.2212 | 1750 | 0.0084 |
| 1.2561 | 1800 | 0.0099 |
| 1.2910 | 1850 | 0.0104 |
| 1.3259 | 1900 | 0.0112 |
| 1.3608 | 1950 | 0.0084 |
| 1.3957 | 2000 | 0.0083 |
| 1.4306 | 2050 | 0.0094 |
| 1.4655 | 2100 | 0.0093 |
| 1.5003 | 2150 | 0.007 |
| 1.5352 | 2200 | 0.0082 |
| 1.5701 | 2250 | 0.0098 |
| 1.6050 | 2300 | 0.0082 |
| 1.6399 | 2350 | 0.0074 |
| 1.6748 | 2400 | 0.0081 |
| 1.7097 | 2450 | 0.0076 |
| 1.7446 | 2500 | 0.0076 |
| 1.7795 | 2550 | 0.0093 |
| 1.8144 | 2600 | 0.0079 |
| 1.8493 | 2650 | 0.0075 |
| 1.8842 | 2700 | 0.0075 |
| 1.9191 | 2750 | 0.0068 |
| 1.9539 | 2800 | 0.0065 |
| 1.9888 | 2850 | 0.0071 |
| 2.0237 | 2900 | 0.006 |
| 2.0586 | 2950 | 0.0053 |
| 2.0935 | 3000 | 0.0048 |
| 2.1284 | 3050 | 0.0056 |
| 2.1633 | 3100 | 0.0063 |
| 2.1982 | 3150 | 0.005 |
| 2.2331 | 3200 | 0.0052 |
| 2.2680 | 3250 | 0.0047 |
| 2.3029 | 3300 | 0.0052 |
| 2.3378 | 3350 | 0.0063 |
| 2.3726 | 3400 | 0.0052 |
| 2.4075 | 3450 | 0.0048 |
| 2.4424 | 3500 | 0.0052 |
| 2.4773 | 3550 | 0.0057 |
| 2.5122 | 3600 | 0.0047 |
| 2.5471 | 3650 | 0.0048 |
| 2.5820 | 3700 | 0.0058 |
| 2.6169 | 3750 | 0.0055 |
| 2.6518 | 3800 | 0.005 |
| 2.6867 | 3850 | 0.0057 |
| 2.7216 | 3900 | 0.0044 |
| 2.7565 | 3950 | 0.0052 |
| 2.7913 | 4000 | 0.0049 |
| 2.8262 | 4050 | 0.0046 |
| 2.8611 | 4100 | 0.0053 |
| 2.8960 | 4150 | 0.0051 |
| 2.9309 | 4200 | 0.0048 |
| 2.9658 | 4250 | 0.0043 |
Framework Versions
- Python: 3.11.13
- Sentence Transformers: 4.1.0
- Transformers: 4.53.0
- PyTorch: 2.6.0+cu124
- Accelerate: 1.8.1
- Datasets: 2.14.4
- Tokenizers: 0.21.2
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}