Spaces:
Running
Running
| from fastapi import FastAPI, Query | |
| from fastapi.responses import JSONResponse | |
| from src.embeddings_search import create_embeddings_search_function_from_embeddings_df | |
| from src.tfidf_search import create_tfidf_search_function | |
| import polars as pl | |
| #from jinja2 import Template | |
| # remove this prefix from the file paths: | |
| path_prefix = "/Users/wes/Google Drive/Shared drives/datalab/projects/2025_coul_aisearch/data/original_box_download/" | |
| # data we will need for search: | |
| block_embeddings_df_path = "block_embeddings/block-embeddings.parquet" | |
| doc_tfidf_df_path = "block_tfidf/TF-IDF-doc-text.parquet" | |
| tfidf_vectorizer_path = "block_tfidf/tfidf_vectorizer_doc_text.joblib" | |
| sbert_query_docs = create_embeddings_search_function_from_embeddings_df( | |
| model_name = "sentence-transformers/all-MiniLM-L6-v2", | |
| embeddings_df_path = block_embeddings_df_path, | |
| device = "cpu") | |
| tfidf_query_docs = create_tfidf_search_function( | |
| dtm_df_path = doc_tfidf_df_path, | |
| vectorizer_path = tfidf_vectorizer_path, | |
| model_name = "facebook/fasttext-en-vectors") | |
| app = FastAPI() | |
| def default(): | |
| return {"status": "ok", "version": 0.1} | |
| def search(q: str = Query(..., description="Search query")): | |
| res_tfidf = tfidf_query_docs(q) | |
| res_sbert = sbert_query_docs(q) | |
| joined = res_sbert.join(res_tfidf, on='file', how = 'inner') | |
| res_combined = joined.with_columns( | |
| (0.7 * pl.col("rank-sbert") + 0.3 * pl.col("rank-tfidf")).alias("rank-combined"), | |
| pl.col("file").str.strip_prefix(path_prefix).alias("file") | |
| ).sort("rank-combined").with_columns( | |
| (20.0 / pl.col('rank-combined')).round(2).alias('confidence') | |
| ).select(['file', 'confidence']) | |
| #return {"request": request, "results": str(res_combined)} | |
| #return {"request": request, "results": res_combined.to_dicts()} | |
| return res_combined.to_dicts() | |
| def echo(query: str): | |
| return {"echo": query} | |