Spaces:
Runtime error
Runtime error
| # ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. ========= | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| # ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. ========= | |
| import os | |
| from typing import Any, Dict, List, Optional, Type, Union | |
| from openai import AsyncStream, Stream | |
| from pydantic import BaseModel | |
| from camel.configs import OPENROUTER_API_PARAMS, OpenRouterConfig | |
| from camel.messages import OpenAIMessage | |
| from camel.models._utils import try_modify_message_with_format | |
| from camel.models.openai_compatible_model_v2 import OpenAICompatibleModelV2 | |
| from camel.types import ( | |
| ChatCompletion, | |
| ChatCompletionChunk, | |
| ModelType, | |
| ) | |
| from camel.utils import ( | |
| BaseTokenCounter, | |
| api_keys_required, | |
| ) | |
| class OpenRouterModel(OpenAICompatibleModelV2): | |
| r"""LLM API served by OpenRouter in a unified OpenAICompatibleModel | |
| interface. | |
| Args: | |
| model_type (Union[ModelType, str]): Model for which a backend is | |
| created. | |
| model_config_dict (Optional[Dict[str, Any]], optional): A dictionary | |
| that will be fed into:obj:`openai.ChatCompletion.create()`. | |
| If:obj:`None`, :obj:`GroqConfig().as_dict()` will be used. | |
| (default: :obj:`None`) | |
| api_key (Optional[str], optional): The API key for authenticating | |
| with the OpenRouter service. (default: :obj:`None`). | |
| url (Optional[str], optional): The url to the OpenRouter service. | |
| (default: :obj:`None`) | |
| token_counter (Optional[BaseTokenCounter], optional): Token counter to | |
| use for the model. If not provided, :obj:`OpenAITokenCounter( | |
| ModelType.GPT_4O_MINI)` will be used. | |
| (default: :obj:`None`) | |
| timeout (Optional[float], optional): The timeout value in seconds for | |
| API calls. If not provided, will fall back to the MODEL_TIMEOUT | |
| environment variable or default to 180 seconds. | |
| (default: :obj:`None`) | |
| """ | |
| def __init__( | |
| self, | |
| model_type: Union[ModelType, str], | |
| model_config_dict: Optional[Dict[str, Any]] = None, | |
| api_key: Optional[str] = None, | |
| url: Optional[str] = None, | |
| token_counter: Optional[BaseTokenCounter] = None, | |
| timeout: Optional[float] = None, | |
| ) -> None: | |
| if model_config_dict is None: | |
| model_config_dict = OpenRouterConfig().as_dict() | |
| api_key = api_key or os.environ.get("OPENROUTER_API_KEY") | |
| url = url or os.environ.get( | |
| "OPENROUTER_API_BASE_URL", "https://openrouter.ai/api/v1" | |
| ) | |
| timeout = timeout or float(os.environ.get("MODEL_TIMEOUT", 180)) | |
| super().__init__( | |
| model_type=model_type, | |
| model_config_dict=model_config_dict, | |
| api_key=api_key, | |
| url=url, | |
| token_counter=token_counter, | |
| timeout=timeout, | |
| ) | |
| def _prepare_request( | |
| self, | |
| messages: List[OpenAIMessage], | |
| response_format: Optional[Type[BaseModel]] = None, | |
| tools: Optional[List[Dict[str, Any]]] = None, | |
| ) -> Dict[str, Any]: | |
| request_config = self.model_config_dict.copy() | |
| if tools: | |
| request_config["tools"] = tools | |
| elif response_format: | |
| try_modify_message_with_format(messages[-1], response_format) | |
| request_config["response_format"] = {"type": "json_object"} | |
| return request_config | |
| def _run( | |
| self, | |
| messages: List[OpenAIMessage], | |
| response_format: Optional[type[BaseModel]] = None, | |
| tools: Optional[List[Dict[str, Any]]] = None, | |
| ) -> Union[ChatCompletion, Stream[ChatCompletionChunk]]: | |
| r"""Runs inference of OpenAI chat completion. | |
| Args: | |
| messages (List[OpenAIMessage]): Message list with the chat history | |
| in OpenAI API format. | |
| response_format (Optional[Type[BaseModel]]): The format of the | |
| response. | |
| tools (Optional[List[Dict[str, Any]]]): The schema of the tools to | |
| use for the request. | |
| Returns: | |
| Union[ChatCompletion, Stream[ChatCompletionChunk]]: | |
| `ChatCompletion` in the non-stream mode, or | |
| `Stream[ChatCompletionChunk]` in the stream mode. | |
| """ | |
| request_config = self._prepare_request( | |
| messages, response_format, tools | |
| ) | |
| response = self._client.chat.completions.create( | |
| messages=messages, | |
| model=self.model_type, | |
| ) | |
| return response | |
| async def _arun( | |
| self, | |
| messages: List[OpenAIMessage], | |
| response_format: Optional[type[BaseModel]] = None, | |
| tools: Optional[List[Dict[str, Any]]] = None, | |
| ) -> Union[ChatCompletion, AsyncStream[ChatCompletionChunk]]: | |
| r"""Runs inference of OpenRouter chat completion asynchronously. | |
| Args: | |
| messages (List[OpenAIMessage]): Message list with the chat history | |
| in OpenAI API format. | |
| response_format (Optional[Type[BaseModel]]): The format of the | |
| response. | |
| tools (Optional[List[Dict[str, Any]]]): The schema of the tools to | |
| use for the request. | |
| Returns: | |
| Union[ChatCompletion, AsyncStream[ChatCompletionChunk]]: | |
| `ChatCompletion` in the non-stream mode, or | |
| `AsyncStream[ChatCompletionChunk]` in the stream mode. | |
| """ | |
| request_config = self._prepare_request( | |
| messages, response_format, tools | |
| ) | |
| response = await self._async_client.chat.completions.create( | |
| messages=messages, | |
| model=self.model_type, | |
| **request_config, | |
| ) | |
| return response | |
| def run( | |
| self, | |
| messages: List[OpenAIMessage], | |
| response_format: Optional[type[BaseModel]] = None, | |
| tools: Optional[List[Dict[str, Any]]] = None, | |
| ) -> Union[ChatCompletion, Stream[ChatCompletionChunk]]: | |
| """ | |
| Public synchronous entrypoint, required by the abstract base. | |
| """ | |
| return self._run(messages, response_format=response_format, tools=tools) | |
| async def arun( | |
| self, | |
| messages: List[OpenAIMessage], | |
| response_format: Optional[type[BaseModel]] = None, | |
| tools: Optional[List[Dict[str, Any]]] = None, | |
| ) -> Union[ChatCompletion, AsyncStream[ChatCompletionChunk]]: | |
| """ | |
| Public async entrypoint, required by the abstract base. | |
| """ | |
| return await self._arun(messages, response_format=response_format, tools=tools) | |
| def check_model_config(self): | |
| r"""Check whether the model configuration contains any unexpected | |
| arguments to OpenRouter API. But OpenRouter API does not have any | |
| additional arguments to check. | |
| Raises: | |
| ValueError: If the model configuration dictionary contains any | |
| unexpected arguments to OpenRouter API. | |
| """ | |
| for param in self.model_config_dict: | |
| if param not in OPENROUTER_API_PARAMS: | |
| raise ValueError( | |
| f"Unexpected argument `{param}` is " | |
| "input into OpenRouter model backend." | |
| ) | |