Spaces:
Runtime error
Runtime error
| # ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. ========= | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| # ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. ========= | |
| from abc import ABC, abstractmethod | |
| from typing import Any, Dict, List, Optional, Union | |
| from openai import Stream | |
| from camel.messages import OpenAIMessage | |
| from camel.types import ( | |
| ChatCompletion, | |
| ChatCompletionChunk, | |
| ModelType, | |
| ParsedChatCompletion, | |
| UnifiedModelType, | |
| ) | |
| from camel.utils import BaseTokenCounter | |
| class BaseModelBackend(ABC): | |
| r"""Base class for different model backends. | |
| It may be OpenAI API, a local LLM, a stub for unit tests, etc. | |
| Args: | |
| model_type (Union[ModelType, str]): Model for which a backend is | |
| created. | |
| model_config_dict (Optional[Dict[str, Any]], optional): A config | |
| dictionary. (default: :obj:`{}`) | |
| api_key (Optional[str], optional): The API key for authenticating | |
| with the model service. (default: :obj:`None`) | |
| url (Optional[str], optional): The url to the model service. | |
| (default: :obj:`None`) | |
| token_counter (Optional[BaseTokenCounter], optional): Token | |
| counter to use for the model. If not provided, | |
| :obj:`OpenAITokenCounter` will be used. (default: :obj:`None`) | |
| """ | |
| def __init__( | |
| self, | |
| model_type: Union[ModelType, str], | |
| model_config_dict: Optional[Dict[str, Any]] = None, | |
| api_key: Optional[str] = None, | |
| url: Optional[str] = None, | |
| token_counter: Optional[BaseTokenCounter] = None, | |
| ) -> None: | |
| self.model_type: UnifiedModelType = UnifiedModelType(model_type) | |
| if model_config_dict is None: | |
| model_config_dict = {} | |
| self.model_config_dict = model_config_dict | |
| self._api_key = api_key | |
| self._url = url | |
| self._token_counter = token_counter | |
| self.check_model_config() | |
| def token_counter(self) -> BaseTokenCounter: | |
| r"""Initialize the token counter for the model backend. | |
| Returns: | |
| BaseTokenCounter: The token counter following the model's | |
| tokenization style. | |
| """ | |
| pass | |
| def run( | |
| self, | |
| messages: List[OpenAIMessage], | |
| ) -> Union[ChatCompletion, Stream[ChatCompletionChunk]]: | |
| r"""Runs the query to the backend model. | |
| Args: | |
| messages (List[OpenAIMessage]): Message list with the chat history | |
| in OpenAI API format. | |
| Returns: | |
| Union[ChatCompletion, Stream[ChatCompletionChunk]]: | |
| `ChatCompletion` in the non-stream mode, or | |
| `Stream[ChatCompletionChunk]` in the stream mode. | |
| """ | |
| pass | |
| def check_model_config(self): | |
| r"""Check whether the input model configuration contains unexpected | |
| arguments | |
| Raises: | |
| ValueError: If the model configuration dictionary contains any | |
| unexpected argument for this model class. | |
| """ | |
| pass | |
| def count_tokens_from_messages(self, messages: List[OpenAIMessage]) -> int: | |
| r"""Count the number of tokens in the messages using the specific | |
| tokenizer. | |
| Args: | |
| messages (List[Dict]): message list with the chat history | |
| in OpenAI API format. | |
| Returns: | |
| int: Number of tokens in the messages. | |
| """ | |
| return self.token_counter.count_tokens_from_messages(messages) | |
| def _to_chat_completion( | |
| self, response: ParsedChatCompletion | |
| ) -> ChatCompletion: | |
| if len(response.choices) > 1: | |
| print("Warning: Multiple response choices detected") | |
| choice = dict( | |
| index=response.choices[0].index, | |
| message={ | |
| "role": response.choices[0].message.role, | |
| "content": response.choices[0].message.content, | |
| "tool_calls": response.choices[0].message.tool_calls, | |
| "parsed": response.choices[0].message.parsed, | |
| }, | |
| finish_reason=response.choices[0].finish_reason, | |
| ) | |
| obj = ChatCompletion.construct( | |
| id=response.id, | |
| choices=[choice], | |
| created=response.created, | |
| model=response.model, | |
| object="chat.completion", | |
| usage=response.usage, | |
| ) | |
| return obj | |
| def token_limit(self) -> int: | |
| r"""Returns the maximum token limit for a given model. | |
| This method retrieves the maximum token limit either from the | |
| `model_config_dict` or from the model's default token limit. | |
| Returns: | |
| int: The maximum token limit for the given model. | |
| """ | |
| return ( | |
| self.model_config_dict.get("max_tokens") | |
| or self.model_type.token_limit | |
| ) | |
| def stream(self) -> bool: | |
| r"""Returns whether the model is in stream mode, which sends partial | |
| results each time. | |
| Returns: | |
| bool: Whether the model is in stream mode. | |
| """ | |
| return False | |