Spaces:
Runtime error
Runtime error
| # ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. ========= | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| # ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. ========= | |
| from __future__ import annotations | |
| import os | |
| from typing import Any | |
| from camel.embeddings.base import BaseEmbedding | |
| from camel.types import EmbeddingModelType | |
| from camel.utils import api_keys_required | |
| class MistralEmbedding(BaseEmbedding[str]): | |
| r"""Provides text embedding functionalities using Mistral's models. | |
| Args: | |
| model_type (EmbeddingModelType, optional): The model type to be | |
| used for text embeddings. | |
| (default: :obj:`MISTRAL_EMBED`) | |
| api_key (str, optional): The API key for authenticating with the | |
| Mistral service. (default: :obj:`None`) | |
| dimensions (int, optional): The text embedding output dimensions. | |
| (default: :obj:`None`) | |
| Raises: | |
| RuntimeError: If an unsupported model type is specified. | |
| """ | |
| def __init__( | |
| self, | |
| model_type: EmbeddingModelType = (EmbeddingModelType.MISTRAL_EMBED), | |
| api_key: str | None = None, | |
| dimensions: int | None = None, | |
| ) -> None: | |
| from mistralai import Mistral | |
| if not model_type.is_mistral: | |
| raise ValueError("Invalid Mistral embedding model type.") | |
| self.model_type = model_type | |
| if dimensions is None: | |
| self.output_dim = model_type.output_dim | |
| else: | |
| assert isinstance(dimensions, int) | |
| self.output_dim = dimensions | |
| self._api_key = api_key or os.environ.get("MISTRAL_API_KEY") | |
| self._client = Mistral(api_key=self._api_key) | |
| def embed_list( | |
| self, | |
| objs: list[str], | |
| **kwargs: Any, | |
| ) -> list[list[float]]: | |
| r"""Generates embeddings for the given texts. | |
| Args: | |
| objs (list[str]): The texts for which to generate the embeddings. | |
| **kwargs (Any): Extra kwargs passed to the embedding API. | |
| Returns: | |
| list[list[float]]: A list that represents the generated embedding | |
| as a list of floating-point numbers. | |
| """ | |
| # TODO: count tokens | |
| response = self._client.embeddings.create( | |
| inputs=objs, | |
| model=self.model_type.value, | |
| **kwargs, | |
| ) | |
| return [data.embedding for data in response.data] # type: ignore[misc,union-attr] | |
| def get_output_dim(self) -> int: | |
| r"""Returns the output dimension of the embeddings. | |
| Returns: | |
| int: The dimensionality of the embedding for the current model. | |
| """ | |
| return self.output_dim | |