Spaces:
Runtime error
Runtime error
| # ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. ========= | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| # ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. ========= | |
| from typing import Any, List, Optional | |
| from colorama import Fore | |
| from camel.agents.chat_agent import ChatAgent | |
| from camel.agents.tool_agents.base import BaseToolAgent | |
| from camel.interpreters import ( | |
| BaseInterpreter, | |
| InternalPythonInterpreter, | |
| SubprocessInterpreter, | |
| ) | |
| from camel.messages import BaseMessage | |
| from camel.models import BaseModelBackend | |
| from camel.responses import ChatAgentResponse | |
| from camel.utils import print_text_animated | |
| # AgentOps decorator setting | |
| try: | |
| import os | |
| if os.getenv("AGENTOPS_API_KEY") is not None: | |
| from agentops import track_agent | |
| else: | |
| raise ImportError | |
| except (ImportError, AttributeError): | |
| from camel.utils import track_agent | |
| class EmbodiedAgent(ChatAgent): | |
| r"""Class for managing conversations of CAMEL Embodied Agents. | |
| Args: | |
| system_message (BaseMessage): The system message for the chat agent. | |
| model (BaseModelBackend, optional): The model backend to use for | |
| generating responses. (default: :obj:`OpenAIModel` with | |
| `GPT_4O_MINI`) | |
| message_window_size (int, optional): The maximum number of previous | |
| messages to include in the context window. If `None`, no windowing | |
| is performed. (default: :obj:`None`) | |
| tool_agents (List[BaseToolAgent], optional): The tools agents to use in | |
| the embodied agent. (default: :obj:`None`) | |
| code_interpreter (BaseInterpreter, optional): The code interpreter to | |
| execute codes. If `code_interpreter` and `tool_agent` are both | |
| `None`, default to `SubProcessInterpreter`. If `code_interpreter` | |
| is `None` and `tool_agents` is not `None`, default to | |
| `InternalPythonInterpreter`. (default: :obj:`None`) | |
| verbose (bool, optional): Whether to print the critic's messages. | |
| logger_color (Any): The color of the logger displayed to the user. | |
| (default: :obj:`Fore.MAGENTA`) | |
| """ | |
| def __init__( | |
| self, | |
| system_message: BaseMessage, | |
| model: Optional[BaseModelBackend] = None, | |
| message_window_size: Optional[int] = None, | |
| tool_agents: Optional[List[BaseToolAgent]] = None, | |
| code_interpreter: Optional[BaseInterpreter] = None, | |
| verbose: bool = False, | |
| logger_color: Any = Fore.MAGENTA, | |
| ) -> None: | |
| self.tool_agents = tool_agents | |
| self.code_interpreter: BaseInterpreter | |
| if code_interpreter is not None: | |
| self.code_interpreter = code_interpreter | |
| elif self.tool_agents: | |
| self.code_interpreter = InternalPythonInterpreter() | |
| else: | |
| self.code_interpreter = SubprocessInterpreter() | |
| if self.tool_agents: | |
| system_message = self._set_tool_agents(system_message) | |
| self.verbose = verbose | |
| self.logger_color = logger_color | |
| super().__init__( | |
| system_message=system_message, | |
| model=model, | |
| message_window_size=message_window_size, | |
| ) | |
| def _set_tool_agents(self, system_message: BaseMessage) -> BaseMessage: | |
| action_space_prompt = self._get_tool_agents_prompt() | |
| result_message = system_message.create_new_instance( | |
| content=system_message.content.format( | |
| action_space=action_space_prompt | |
| ) | |
| ) | |
| if self.tool_agents is not None: | |
| self.code_interpreter.update_action_space( | |
| {tool.name: tool for tool in self.tool_agents} | |
| ) | |
| return result_message | |
| def _get_tool_agents_prompt(self) -> str: | |
| r"""Returns the action space prompt. | |
| Returns: | |
| str: The action space prompt. | |
| """ | |
| if self.tool_agents is not None: | |
| return "\n".join( | |
| [ | |
| f"*** {tool.name} ***:\n {tool.description}" | |
| for tool in self.tool_agents | |
| ] | |
| ) | |
| else: | |
| return "" | |
| def get_tool_agent_names(self) -> List[str]: | |
| r"""Returns the names of tool agents. | |
| Returns: | |
| List[str]: The names of tool agents. | |
| """ | |
| if self.tool_agents is not None: | |
| return [tool.name for tool in self.tool_agents] | |
| else: | |
| return [] | |
| # ruff: noqa: E501 | |
| def step(self, input_message: BaseMessage) -> ChatAgentResponse: # type: ignore[override] | |
| r"""Performs a step in the conversation. | |
| Args: | |
| input_message (BaseMessage): The input message. | |
| Returns: | |
| ChatAgentResponse: A struct containing the output messages, | |
| a boolean indicating whether the chat session has terminated, | |
| and information about the chat session. | |
| """ | |
| response = super().step(input_message) | |
| if response.msgs is None or len(response.msgs) == 0: | |
| raise RuntimeError("Got None output messages.") | |
| if response.terminated: | |
| raise RuntimeError(f"{self.__class__.__name__} step failed.") | |
| # NOTE: Only single output messages are supported | |
| explanations, codes = response.msg.extract_text_and_code_prompts() | |
| if self.verbose: | |
| for explanation, code in zip(explanations, codes): | |
| print_text_animated( | |
| self.logger_color + f"> Explanation:\n{explanation}" | |
| ) | |
| print_text_animated(self.logger_color + f"> Code:\n{code}") | |
| if len(explanations) > len(codes): | |
| print_text_animated( | |
| self.logger_color + f"> Explanation:\n{explanations[-1]}" | |
| ) | |
| content = response.msg.content | |
| if codes is not None: | |
| try: | |
| content = "\n> Executed Results:\n" | |
| for block_idx, code in enumerate(codes): | |
| executed_output = self.code_interpreter.run( | |
| code, code.code_type | |
| ) | |
| content += ( | |
| f"Executing code block {block_idx}: {{\n" | |
| + executed_output | |
| + "}\n" | |
| ) | |
| except InterruptedError as e: | |
| content = ( | |
| f"\n> Running code fail: {e}\n" | |
| "Please regenerate the code." | |
| ) | |
| # TODO: Handle errors | |
| content = input_message.content + f"\n> Embodied Actions:\n{content}" | |
| message = BaseMessage( | |
| input_message.role_name, | |
| input_message.role_type, | |
| input_message.meta_dict, | |
| content, | |
| ) | |
| return ChatAgentResponse( | |
| msgs=[message], | |
| terminated=response.terminated, | |
| info=response.info, | |
| ) | |