File size: 8,885 Bytes
7f4c99b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f3065c
7f4c99b
 
 
 
 
 
9f3065c
 
7f4c99b
 
 
 
 
 
 
 
9f3065c
7f4c99b
aa0cb15
 
7f4c99b
9f3065c
7f4c99b
 
 
9f3065c
7f4c99b
 
 
fc39399
 
3901f50
 
 
 
 
 
 
 
 
 
 
 
7f4c99b
0fb3ed4
9f3065c
 
 
 
 
 
 
 
 
 
 
0fb3ed4
 
 
 
 
 
9f3065c
 
 
 
 
 
 
 
 
 
 
 
7f4c99b
 
9f3065c
7f4c99b
 
0d71a12
 
 
 
9f3065c
7f4c99b
 
 
 
 
 
9f3065c
7f4c99b
 
 
 
 
 
 
 
 
 
 
 
9f3065c
7f4c99b
 
 
9f3065c
7f4c99b
9f3065c
 
 
0d71a12
9f3065c
 
 
 
84216fc
 
 
0d71a12
520e2e1
0d71a12
9f3065c
 
 
 
 
 
 
84216fc
 
 
 
9f3065c
 
520e2e1
 
 
 
9f3065c
 
 
 
 
520e2e1
9f3065c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f4c99b
 
 
9f3065c
 
 
 
 
 
97f525d
9f3065c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f4c99b
9f3065c
 
 
0bbd9e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f4c99b
9f3065c
7f4c99b
 
 
9f3065c
 
 
 
 
 
 
 
 
 
 
7f4c99b
 
52a337d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
import os
import subprocess
import sys
import io
import gradio as gr
import numpy as np
import random
import spaces
import torch
from diffusers import Flux2Pipeline, Flux2Transformer2DModel
from diffusers import BitsAndBytesConfig as DiffBitsAndBytesConfig
from optimization import optimize_pipeline_
import requests
from PIL import Image
import json

dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024


def remote_text_encoder(prompts):
    response = requests.post(
        "https://remote-text-encoder-flux-2.huggingface.co/predict",
        json={"prompt": prompts},
        headers={
            "Authorization": f"Bearer {os.environ['HF_TOKEN']}",
            "Content-Type": "application/json",
        },
    )

    assert response.status_code == 200, f"{response.status_code=}"

    prompt_embeds = torch.load(io.BytesIO(response.content))

    return prompt_embeds


# Load model
repo_id = "black-forest-labs/FLUX.2-dev"

dit = Flux2Transformer2DModel.from_pretrained(
    repo_id, subfolder="transformer", torch_dtype=torch.bfloat16
)

pipe = Flux2Pipeline.from_pretrained(
    repo_id, text_encoder=None, transformer=dit, torch_dtype=torch.bfloat16
)
pipe.to("cuda")

pipe.transformer.set_attention_backend("_flash_3_hub")

try:
    optimize_pipeline_(
        pipe,
        image=[Image.new("RGB", (1024, 1024))],
        prompt_embeds=remote_text_encoder("prompt").to("cuda"),
        guidance_scale=2.5,
        width=1024,
        height=1024,
        num_inference_steps=1,
    )
except Exception as e:
    print(f"Optimization failed: {e}")


def get_duration(
    prompt,
    input_images=None,
    seed=42,
    randomize_seed=False,
    width=1024,
    height=1024,
    num_inference_steps=50,
    guidance_scale=2.5,
    progress=gr.Progress(track_tqdm=True),
):
    num_images = 0 if input_images is None else len(input_images)
    step_duration = 1 + 0.7 * num_images
    return num_inference_steps * step_duration + 10


@spaces.GPU(duration=get_duration)
def infer(
    prompt,
    input_images=None,
    seed=42,
    randomize_seed=False,
    width=1024,
    height=1024,
    num_inference_steps=50,
    guidance_scale=2.5,
    progress=gr.Progress(track_tqdm=True),
):

    if randomize_seed:
        seed = random.randint(0, MAX_SEED)

    # Get prompt embeddings from remote text encoder
    progress(0.1, desc="Encoding prompt...")
    try:
        prompt_embeds = remote_text_encoder(prompt).to("cuda")
    except Exception as e:
        raise gr.Error(f"Remote text encoder failed: {e}")

    # Prepare image list (convert None or empty gallery to None)
    image_list = None
    if input_images is not None and len(input_images) > 0:
        image_list = []
        for item in input_images:
            image_list.append(item[0])

    # Generate image
    progress(0.3, desc="Generating image...")
    generator = torch.Generator(device=device).manual_seed(seed)
    image = pipe(
        prompt_embeds=prompt_embeds,
        image=image_list,
        width=width,
        height=height,
        num_inference_steps=num_inference_steps,
        guidance_scale=guidance_scale,
        generator=generator,
    ).images[0]

    return image, seed


# --- UI Configuration ---

css = """
@import url('https://fonts.googleapis.com/css2?family=Inter:wght@300;400;500;600&display=swap');

html, body, .gradio-container {
    background-color: #000000 !important;
    color: #ffffff !important;
    font-family: 'Inter', sans-serif !important;
    margin: 0;
    padding: 0 !important;
    overflow: hidden !important;
    height: 100vh !important;
    max-height: 100vh !important;
    width: 100vw !important;
    max-width: 100vw !important;
    --color-background-primary: #000000;
    --color-background-secondary: #050505;
    --color-border-primary: #171717;
    --color-text-primary: #ffffff;
    --color-text-secondary: #a3a3a3;
}

footer {
    display: none !important;
}

/* Layout */
#main-container {
    position: fixed !important;
    top: 0;
    left: 0;
    width: 100vw !important;
    height: 100vh !important;
    gap: 0 !important;
    display: flex;
    flex-wrap: nowrap;
    overflow: hidden;
    z-index: 10;
}

#right-sidebar {
    background-color: #050505;
    border-left: 1px solid #171717;
    width: 320px !important;
    max-width: 320px !important;
    flex: none !important;
    padding: 0 !important;
    height: 100%;
    overflow-y: auto;
}

#center-canvas {
    background-color: #090909;
    flex-grow: 1 !important;
    display: flex;
    flex-direction: column;
    justify-content: center;
    align-items: center;
    padding: 20px;
    background-image: radial-gradient(#151515 1px, transparent 1px);
    background-size: 20px 20px;
    height: 100%;
    position: relative;
}

/* Components */
#generate-btn {
    background: #ffffff !important;
    color: #000000 !important;
    border-radius: 6px !important;
    font-weight: 600 !important;
    text-transform: uppercase;
    font-size: 11px !important;
    border: none !important;
}

#prompt-input textarea {
    background-color: #000000 !important;
    border: 1px solid #262626 !important;
    color: white !important;
    border-radius: 8px !important;
}

#prompt-input span {
    display: none; /* Hide default label if needed, or style it */
}

/* Accordions */
.accordion {
    background: transparent !important;
    border: none !important;
    border-bottom: 1px solid #171717 !important;
}

.accordion-label {
    font-size: 11px !important;
    font-weight: 600 !important;
    text-transform: uppercase;
    color: #a3a3a3 !important;
}

/* Sliders */
input[type=range] {
    accent-color: white !important;
}

/* Gallery in Sidebar */
#history-gallery {
    flex-grow: 1;
    overflow-y: auto;
    padding: 10px;
}

#history-gallery .grid-wrap {
    grid-template-columns: 1fr !important; /* Force list view */
}

/* Main Image */
#main-image {
    background: transparent !important;
    border: 1px solid #171717;
    border-radius: 8px;
    overflow: hidden;
    box-shadow: 0 20px 25px -5px rgba(0, 0, 0, 0.1), 0 10px 10px -5px rgba(0, 0, 0, 0.04);
}

/* Scrollbars */
::-webkit-scrollbar {
    width: 6px;
    height: 6px;
}
::-webkit-scrollbar-track {
    background: #000000; 
}
::-webkit-scrollbar-thumb {
    background: #333; 
    border-radius: 3px;
}
"""

controls_header_html = """
<div style="padding: 20px 20px 10px 20px;">
    <h2 style="font-size: 11px; font-weight: 600; text-transform: uppercase; color: #666; margin: 0;">Configuration</h2>
</div>
"""

with gr.Blocks(title="FLUX.2 [dev]") as demo:
    with gr.Row(elem_id="main-container", variant="compact"):
        # --- Center Canvas ---
        with gr.Column(elem_id="center-canvas"):
            with gr.Row(elem_id="canvas-toolbar"):
                gr.Markdown("Canvas", elem_id="canvas-info")

            result_image = gr.Image(
                elem_id="main-image", interactive=False, show_label=False
            )

        # --- Right Sidebar ---
        with gr.Column(elem_id="right-sidebar", min_width=320):
            gr.HTML(controls_header_html)

            # Prompt Section
            prompt = gr.Textbox(
                elem_id="prompt-input",
                lines=4,
                placeholder="Describe your imagination...",
                label="Prompt",
                show_label=True,
            )
            run_button = gr.Button("Generate Image", elem_id="generate-btn")

            # Settings
            input_images = gr.Gallery(
                label="Input Image(s)", type="pil", columns=3, rows=1
            )

            width = gr.Slider(
                label="Width",
                minimum=256,
                maximum=MAX_IMAGE_SIZE,
                step=32,
                value=1024,
            )
            height = gr.Slider(
                label="Height",
                minimum=256,
                maximum=MAX_IMAGE_SIZE,
                step=32,
                value=1024,
            )

            guidance_scale = gr.Slider(
                label="Guidance Scale", minimum=0.0, maximum=10.0, step=0.1, value=4
            )
            num_inference_steps = gr.Slider(
                label="Inference Steps", minimum=1, maximum=100, step=1, value=30
            )
            seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

    # Wiring
    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=infer,
        inputs=[
            prompt,
            input_images,
            seed,
            randomize_seed,
            width,
            height,
            num_inference_steps,
            guidance_scale,
        ],
        outputs=[result_image, seed],
    )

demo.launch(css=css)