File size: 44,465 Bytes
ae76944
 
 
 
 
418029a
ae76944
 
 
ff42fba
f7212d2
418029a
8445038
7d5246d
 
5da4a63
 
ae76944
 
2d8a40a
3627a6f
efad910
ae76944
418029a
ae76944
 
 
 
 
 
 
 
 
 
 
418029a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
069b4ed
ae76944
bafb16f
eba970d
1f744a1
418029a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae76944
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f744a1
bafb16f
3627a6f
 
 
 
 
dca9a76
f1eefe4
 
ae76944
 
797ee59
 
8445038
ae76944
 
 
 
8445038
 
bafb16f
8445038
 
 
 
 
 
 
 
 
1f744a1
ae76944
 
 
2d8a40a
 
ae76944
 
 
418029a
 
ae76944
418029a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae76944
418029a
 
5da4a63
418029a
 
 
 
 
 
 
 
 
 
 
 
 
 
ae76944
418029a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae76944
 
418029a
 
 
ae76944
 
418029a
ae76944
418029a
 
 
 
 
 
 
 
 
 
 
ae76944
418029a
 
 
 
 
 
 
ae76944
 
 
 
 
 
 
 
418029a
ae76944
418029a
 
 
 
ae76944
418029a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5da4a63
ae76944
 
 
 
35871eb
1f744a1
 
 
ae76944
35871eb
1f744a1
 
418029a
35871eb
1f744a1
ae76944
35871eb
 
5da4a63
ae76944
 
 
 
 
5da4a63
ae76944
 
5da4a63
efad910
ae76944
 
 
 
 
efad910
ae76944
 
 
efad910
6c4cecd
ae76944
 
 
 
 
 
 
 
 
 
6c4cecd
ae76944
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c4cecd
418029a
acee8a8
 
 
 
 
 
 
 
 
 
 
418029a
 
 
 
 
 
 
 
acee8a8
 
 
 
 
 
ae76944
6c4cecd
ae76944
35871eb
1f744a1
 
418029a
35871eb
1f744a1
 
35871eb
 
ae76944
 
 
 
 
 
 
 
 
 
 
 
 
1f744a1
ae76944
 
 
 
 
1f744a1
 
 
ae76944
 
 
 
 
 
6c4cecd
ae76944
 
 
1f744a1
ae76944
 
 
 
 
 
 
1f744a1
ae76944
6c4cecd
ae76944
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f744a1
ae76944
 
 
7d5246d
ae76944
bb2cab7
ae76944
 
 
 
 
bb2cab7
ae76944
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d5246d
ae76944
 
7d5246d
acee8a8
 
418029a
acee8a8
8445038
acee8a8
 
 
 
 
 
 
418029a
acee8a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
418029a
acee8a8
 
 
1f744a1
8445038
 
acee8a8
8445038
 
 
acee8a8
8445038
acee8a8
8445038
 
 
 
 
 
ae76944
 
 
 
 
 
 
8445038
069b4ed
ae76944
 
 
8445038
ae76944
 
 
 
 
 
 
 
8445038
ae76944
 
 
 
 
 
 
 
 
 
 
 
 
 
1ef2681
ae76944
 
 
 
 
 
 
 
 
 
 
 
8445038
069b4ed
ae76944
 
 
 
dca9a76
ae76944
 
5da4a63
ae76944
 
5da4a63
ae76944
5da4a63
ae76944
 
 
 
 
5da4a63
ae76944
 
 
 
2d8a40a
ae76944
 
 
2d8a40a
ae76944
2d8a40a
ae76944
 
 
 
8445038
797ee59
ae76944
 
 
8445038
1f744a1
ae76944
8445038
ae76944
8445038
ae76944
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f744a1
ae76944
 
 
 
 
 
 
 
 
 
 
418029a
ae76944
 
 
 
 
 
418029a
acee8a8
ae76944
 
 
 
 
 
418029a
ae76944
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8445038
ae76944
2d8a40a
ae76944
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d8a40a
ae76944
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d8a40a
ae76944
 
 
 
 
 
418029a
 
 
 
 
 
 
 
ae76944
 
 
 
 
418029a
ae76944
 
 
 
418029a
ae76944
 
 
1f744a1
418029a
 
 
ae76944
 
 
 
de7eff6
ae76944
 
eba970d
ae76944
eba970d
ae76944
 
 
418029a
 
 
 
 
 
 
 
 
 
ae76944
 
 
 
 
 
418029a
ae76944
 
 
1f744a1
 
 
 
 
ae76944
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
#!/usr/bin/env python3
# -*- coding: utf-8 -*-

"""
Multilingual Voice-Based Agricultural Recommendation System
Updated for TorchAudio 2.8+ deprecations and TorchCodec migration
Optimized for Hugging Face Spaces deployment with Whisper-first pipeline
"""

from __future__ import annotations
import torch
import warnings
import json
import os
import re
import tempfile
import shutil
import gradio as gr
import pandas as pd
from typing import List, Dict, Optional, Union
from transformers import AutoModel, AutoModelForAudioClassification, Wav2Vec2FeatureExtractor
from transformers import WhisperProcessor, WhisperForConditionalGeneration
from transformers import AutoTokenizer, PretrainedConfig, PreTrainedModel
from transformers import AutoModelForSeq2SeqLM
from pathlib import Path
import torch.nn as nn
from transformers import Gemma3ForCausalLM, Gemma3TextConfig
from transformers.models.gemma3.modeling_gemma3 import (
    Gemma3Attention,
    Gemma3DecoderLayer, 
    Gemma3TextModel,
)
from transformers.modeling_outputs import TokenClassifierOutput
from transformers.utils import logging
from sentence_transformers import SentenceTransformer, util
import librosa  # Alternative to torchaudio
import soundfile as sf  # Alternative audio loading

# Try to import TorchCodec and TorchAudio with fallbacks
try:
    import torchcodec
    from torchcodec import AudioDecoder
    TORCHCODEC_AVAILABLE = True
    print("βœ… TorchCodec available - using new audio loading")
except ImportError:
    TORCHCODEC_AVAILABLE = False
    print("⚠️ TorchCodec not available - using fallback methods")

try:
    import torchaudio
    # Suppress TorchAudio deprecation warnings for backends
    warnings.filterwarnings("ignore", category=UserWarning, module="torchaudio")
    TORCHAUDIO_AVAILABLE = True
    print("βœ… TorchAudio available - with deprecation handling")
except ImportError:
    TORCHAUDIO_AVAILABLE = False
    torchaudio = None
    print("⚠️ TorchAudio not available - using librosa fallback")

try:
    from IndicTransToolkit.processor import IndicProcessor
    INDICTRANS_TOOLKIT_AVAILABLE = True
    print("βœ… IndicTransToolkit available")
except ImportError:
    INDICTRANS_TOOLKIT_AVAILABLE = False
    print("⚠️ IndicTransToolkit not available - using basic preprocessing")

logger = logging.get_logger(__name__)
device = "cuda" if torch.cuda.is_available() else "cpu"

# --- CONFIGURATION ---
HF_TOKEN = os.getenv("HF_TOKEN", "")

if HF_TOKEN:
    from huggingface_hub import login
    try:
        login(HF_TOKEN)
        print("βœ… Successfully logged in to Hugging Face!")
    except Exception as e:
        print(f"⚠️ HF login failed: {e}")

# --- FALLBACK INDIC PROCESSOR FOR WHEN TOOLKIT IS NOT AVAILABLE ---
class BasicIndicProcessor:
    """Basic fallback processor when IndicTransToolkit is not available"""
    def __init__(self, inference=True):
        self.inference = inference
    
    def preprocess_batch(self, sentences, src_lang, tgt_lang):
        """Basic preprocessing - add language tokens"""
        processed_sentences = []
        for sentence in sentences:
            processed_sentence = f"<2{tgt_lang}> {sentence.strip()}"
            processed_sentences.append(processed_sentence)
        return processed_sentences
    
    def postprocess_batch(self, sentences, lang):
        """Basic postprocessing - remove special tokens"""
        processed_sentences = []
        for sentence in sentences:
            processed_sentence = sentence.strip()
            if processed_sentence.startswith('<2'):
                processed_sentence = processed_sentence.split('>', 1)[-1].strip()
            processed_sentences.append(processed_sentence)
        return processed_sentences

# --- CUSTOM GEMMA3 BIDIRECTIONAL MODEL FOR PUNCTUATION ---
class Gemma3PunctuationConfig(Gemma3TextConfig):
    """Configuration class for Gemma3 punctuation model."""
    model_type = "cadence_punctuation"
    
    def __init__(
        self,
        num_labels: int = 31,
        classifier_dropout_prob: float = 0.0,
        use_non_causal_attention: bool = True,
        **kwargs
    ):
        super().__init__(**kwargs)
        self.num_labels = num_labels
        self.classifier_dropout_prob = classifier_dropout_prob
        self.use_non_causal_attention = use_non_causal_attention

class NonCausalGemma3Attention(Gemma3Attention):
    """Gemma3Attention configured for non-causal token classification."""
    def __init__(self, config, layer_idx: int):
        super().__init__(config, layer_idx)
        self.is_causal = False
        self.sliding_window = None

class NonCausalGemma3DecoderLayer(Gemma3DecoderLayer):
    """Decoder layer with non-causal attention for token classification."""
    def __init__(self, config, layer_idx: int):
        super().__init__(config, layer_idx)
        self.self_attn = NonCausalGemma3Attention(config, layer_idx)

class Gemma3TokenClassificationModel(Gemma3TextModel):
    """Gemma3 base model configured for token classification."""
    _no_split_modules = ["NonCausalGemma3DecoderLayer"]
    
    def __init__(self, config):
        super().__init__(config)
        if getattr(config, 'use_non_causal_attention', True):
            self.layers = nn.ModuleList(
                [
                    NonCausalGemma3DecoderLayer(config, layer_idx)
                    for layer_idx in range(config.num_hidden_layers)
                ]
            )
    
    def _update_causal_mask(
        self,
        attention_mask: torch.Tensor,
        input_tensor: torch.Tensor,
        cache_position: torch.Tensor,
        past_key_values = None,
        output_attentions: bool = False,
    ):
        """Override to create bidirectional attention mask (no causal masking)."""
        if self.config._attn_implementation == "flash_attention_2":
            if attention_mask is not None and 0.0 in attention_mask:
                return attention_mask
            return None
            
        past_seen_tokens = (
            past_key_values.get_seq_length() if past_key_values is not None else 0
        )
        using_static_cache = isinstance(past_key_values, type(None)) is False and hasattr(past_key_values, 'get_max_length')
        
        dtype, device = input_tensor.dtype, input_tensor.device
        min_dtype = torch.finfo(dtype).min
        sequence_length = input_tensor.shape[1]
        
        if using_static_cache:
            target_length = past_key_values.get_max_length()
        else:
            target_length = (
                attention_mask.shape[-1]
                if isinstance(attention_mask, torch.Tensor)
                else past_seen_tokens + sequence_length + 1
            )
            
        if attention_mask is not None and attention_mask.dim() == 4:
            if attention_mask.max() != 0:
                raise ValueError(
                    "Custom 4D attention mask should be passed in inverted form with max==0`"
                )
            causal_mask = attention_mask
        else:
            causal_mask = torch.zeros(
                (sequence_length, target_length), dtype=dtype, device=device
            )
            
            causal_mask *= torch.arange(
                target_length, device=device
            ) > cache_position.reshape(-1, 1)
            causal_mask = causal_mask[None, None, :, :].expand(
                input_tensor.shape[0], 1, -1, -1
            )
            
            if attention_mask is not None:
                causal_mask = causal_mask.clone()
                mask_length = attention_mask.shape[-1]
                padding_mask = (
                    causal_mask[:, :, :, :mask_length]
                    + attention_mask[:, None, None, :]
                )
                padding_mask = padding_mask == 0
                causal_mask[:, :, :, :mask_length] = causal_mask[
                    :, :, :, :mask_length
                ].masked_fill(padding_mask, min_dtype)
                
        return causal_mask

class Gemma3ForTokenClassification(Gemma3ForCausalLM):
    """Gemma3 model for token classification (punctuation prediction)."""
    
    config_class = Gemma3PunctuationConfig
    
    def __init__(self, config):
        super().__init__(config)
        self.num_labels = config.num_labels
        
        if getattr(config, 'use_non_causal_attention', True):
            self.model = Gemma3TokenClassificationModel(config)
        
        classifier_dropout_prob = getattr(config, 'classifier_dropout_prob', 0.0)
        self.lm_head = nn.Sequential(
            nn.Dropout(classifier_dropout_prob),
            nn.Linear(config.hidden_size, config.num_labels)
        )
        
        self.config.num_labels = config.num_labels
        self.post_init()
    
    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        cache_position: Optional[torch.LongTensor] = None,
    ) -> TokenClassifierOutput:
        """Forward pass for token classification."""
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
        
        outputs = self.model(
            input_ids=input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            cache_position=cache_position,
        )
        
        sequence_output = outputs[0]
        logits = self.lm_head(sequence_output)
        
        loss = None
        if labels is not None:
            loss_fct = nn.CrossEntropyLoss(ignore_index=-100)
            loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
        
        if not return_dict:
            output = (logits,) + outputs[2:]
            return ((loss,) + output) if loss is not None else output
            
        return TokenClassifierOutput(
            loss=loss,
            logits=logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )

# Register the custom model
from transformers import AutoConfig
AutoConfig.register("cadence_punctuation", Gemma3PunctuationConfig)

# --- LANGUAGE MAPPINGS ---
LID_TO_ASR_LANG_MAP = {
    "asm_Beng": "as", "ben_Beng": "bn", "brx_Deva": "br", "doi_Deva": "doi",
    "guj_Gujr": "gu", "hin_Deva": "hi", "kan_Knda": "kn", "kas_Arab": "ks",
    "kas_Deva": "ks", "gom_Deva": "kok", "mai_Deva": "mai", "mal_Mlym": "ml",
    "mni_Beng": "mni", "mar_Deva": "mr", "nep_Deva": "ne", "ory_Orya": "or",
    "pan_Guru": "pa", "san_Deva": "sa", "sat_Olck": "sat", "snd_Arab": "sd",
    "tam_Taml": "ta", "tel_Telu": "te", "urd_Arab": "ur",
    "asm": "as", "ben": "bn", "brx": "br", "doi": "doi", "guj": "gu", "hin": "hi",
    "kan": "kn", "kas": "ks", "gom": "kok", "mai": "mai", "mal": "ml", "mni": "mni",
    "mar": "mr", "npi": "ne", "ory": "or", "pan": "pa", "sa": "sa", "sat": "sat",
    "snd": "sd", "tam": "ta", "tel": "te", "urd": "ur", "en": "en"
}

ASR_CODE_TO_NAME = {
    "as": "Assamese", "bn": "Bengali", "br": "Bodo", "doi": "Dogri", "gu": "Gujarati",
    "hi": "Hindi", "kn": "Kannada", "ks": "Kashmiri", "kok": "Konkani", "mai": "Maithili",
    "ml": "Malayalam", "mni": "Manipuri", "mr": "Marathi", "ne": "Nepali", "or": "Odia",
    "pa": "Punjabi", "sa": "Sanskrit", "sat": "Santali", "sd": "Sindhi", "ta": "Tamil",
    "te": "Telugu", "ur": "Urdu", "en": "English"
}

ASR_TO_INDICTRANS_MAP = {
    "as": "asm_Beng", "bn": "ben_Beng", "br": "brx_Deva", "doi": "doi_Deva",
    "gu": "guj_Gujr", "hi": "hin_Deva", "kn": "kan_Knda", "ks": "kas_Deva",
    "kok": "gom_Deva", "mai": "mai_Deva", "ml": "mal_Mlym", "mni": "mni_Beng",
    "mr": "mar_Deva", "ne": "nep_Deva", "or": "ory_Orya", "pa": "pan_Guru",
    "sa": "san_Deva", "sat": "sat_Olck", "sd": "snd_Arab", "ta": "tam_Taml",
    "te": "tel_Telu", "ur": "urd_Arab", "en": "eng_Latn"
}

# Audio processing configuration
SUPPORTED_AUDIO_FORMATS = {
    '.wav', '.mp3', '.flac', '.opus', '.ogg', '.m4a', '.aac', '.mp4',
    '.wma', '.amr', '.aiff', '.au', '.3gp', '.webm', '.mpeg'
}

def detect_audio_format(audio_path: str) -> str:
    return Path(audio_path).suffix.lower()

def load_audio_torchcodec(audio_path: str, target_sr: int = 16000) -> tuple:
    """Load audio using TorchCodec (new recommended method)"""
    try:
        print(f"πŸ”§ Loading audio with TorchCodec: {audio_path}")
        
        # Use TorchCodec AudioDecoder
        decoder = AudioDecoder(audio_path)
        
        # Get audio info
        metadata = decoder.metadata
        original_sr = int(metadata.sample_rate)
        
        # Decode audio
        audio_data = decoder.decode()  # Returns tensor
        waveform = audio_data.audio  # Get audio tensor
        
        print(f"🎡 TorchCodec loaded audio: {waveform.shape} at {original_sr} Hz")
        
        # Convert to mono if stereo
        if waveform.shape[0] > 1:
            waveform = torch.mean(waveform, dim=0, keepdim=True)
            print(f"πŸ”„ Converted from stereo to mono")
        
        # Resample if needed
        if original_sr != target_sr:
            print(f"πŸ”„ Resampling from {original_sr} Hz to {target_sr} Hz...")
            # Use torchaudio functional for resampling (still available)
            if TORCHAUDIO_AVAILABLE:
                waveform = torchaudio.functional.resample(
                    waveform,
                    orig_freq=original_sr,
                    new_freq=target_sr
                )
            else:
                # Fallback to librosa
                waveform_np = waveform.numpy()
                waveform_resampled = librosa.resample(
                    waveform_np[0], 
                    orig_sr=original_sr, 
                    target_sr=target_sr
                )
                waveform = torch.tensor(waveform_resampled).unsqueeze(0)
            print(f"βœ… Resampled to {target_sr} Hz")
        
        print(f"βœ… TorchCodec final audio: {waveform.shape} at {target_sr} Hz")
        return waveform, target_sr
        
    except Exception as e:
        print(f"❌ TorchCodec loading failed: {e}")
        raise e

def load_audio_librosa(audio_path: str, target_sr: int = 16000) -> tuple:
    """Load audio using librosa (fallback method)"""
    try:
        print(f"πŸ”§ Loading audio with librosa: {audio_path}")
        
        # Load with librosa
        waveform_np, sr = librosa.load(audio_path, sr=target_sr, mono=True)
        
        # Convert to torch tensor and add channel dimension
        waveform = torch.tensor(waveform_np).unsqueeze(0)
        
        print(f"βœ… Librosa loaded audio: {waveform.shape} at {target_sr} Hz")
        return waveform, target_sr
        
    except Exception as e:
        print(f"❌ Librosa loading failed: {e}")
        raise e

def load_audio_torchaudio_legacy(audio_path: str, target_sr: int = 16000) -> tuple:
    """Load audio using legacy TorchAudio (with backend handling)"""
    try:
        print(f"πŸ”§ Loading audio with TorchAudio (legacy): {audio_path}")
        
        # Try different backends
        backends_to_try = []
        
        if TORCHAUDIO_AVAILABLE:
            try:
                # Suppress the deprecation warning temporarily
                with warnings.catch_warnings():
                    warnings.simplefilter("ignore")
                    available_backends = torchaudio.list_audio_backends()
                backends_to_try = available_backends
            except Exception:
                backends_to_try = ['soundfile', 'sox_io']
        
        audio_format = detect_audio_format(audio_path)
        print(f"🎡 Audio format: {audio_format}")
        print(f"πŸ”§ Available backends: {backends_to_try}")
        
        waveform = None
        orig_sr = None
        
        # Try to load with different backends
        for backend in backends_to_try + [None]:  # None for default
            try:
                if backend:
                    print(f"πŸ”„ Trying {backend} backend...")
                    if hasattr(torchaudio, 'set_audio_backend'):
                        torchaudio.set_audio_backend(backend)
                    waveform, orig_sr = torchaudio.load(audio_path, backend=backend)
                else:
                    print(f"πŸ”„ Trying default backend...")
                    waveform, orig_sr = torchaudio.load(audio_path)
                
                print(f"βœ… Successfully loaded with {backend or 'default'} backend")
                break
                
            except Exception as e:
                print(f"❌ {backend or 'default'} backend failed: {e}")
                continue
        
        if waveform is None:
            raise Exception("All TorchAudio backends failed")
        
        print(f"🎡 Loaded audio: {waveform.shape} at {orig_sr} Hz")
        
        # Convert to mono
        if waveform.shape[0] > 1:
            waveform = torch.mean(waveform, dim=0, keepdim=True)
            print(f"πŸ”„ Converted from stereo to mono")
        
        # Resample if needed
        if orig_sr != target_sr:
            print(f"πŸ”„ Resampling from {orig_sr} Hz to {target_sr} Hz...")
            waveform = torchaudio.functional.resample(
                waveform,
                orig_freq=orig_sr,
                new_freq=target_sr
            )
            print(f"βœ… Resampled to {target_sr} Hz")
        
        return waveform, target_sr
        
    except Exception as e:
        print(f"❌ TorchAudio legacy loading failed: {e}")
        raise e

def preprocess_audio(audio_path: str, target_sr: int = 16000) -> tuple:
    """
    Preprocess audio with multiple fallback methods for TorchAudio 2.8+ compatibility
    """
    try:
        original_audio_format = detect_audio_format(audio_path)
        print(f"🎡 Detected original format: {original_audio_format}")
        
        # Method 1: Try TorchCodec (recommended for future)
        if TORCHCODEC_AVAILABLE:
            try:
                return load_audio_torchcodec(audio_path, target_sr)
            except Exception as e:
                print(f"⚠️ TorchCodec failed: {e}")
        
        # Method 2: Try TorchAudio legacy (with deprecation handling)
        if TORCHAUDIO_AVAILABLE:
            try:
                return load_audio_torchaudio_legacy(audio_path, target_sr)
            except Exception as e:
                print(f"⚠️ TorchAudio legacy failed: {e}")
        
        # Method 3: Fallback to librosa
        try:
            return load_audio_librosa(audio_path, target_sr)
        except Exception as e:
            print(f"⚠️ Librosa fallback failed: {e}")
        
        raise Exception("All audio loading methods failed")
        
    except Exception as e:
        error_msg = f"❌ Error in audio preprocessing: {str(e)}"
        print(error_msg)
        raise Exception(error_msg)

# --- GLOBAL MODEL STORAGE ---
models = {}
qa_system = {}

def load_models():
    """Load all models with caching using global variables."""
    global models
    
    if models:
        print("βœ… Models already loaded from cache")
        return models
    
    print("πŸš€ Loading models for the first time...")
    
    try:
        print("Loading ASR model (IndicConformer)...")
        asr_model_id = "ai4bharat/indic-conformer-600m-multilingual"
        models['asr_model'] = AutoModel.from_pretrained(asr_model_id, trust_remote_code=True).to(device)
        models['asr_model'].eval()
        print("βœ… ASR Model loaded.")
    except Exception as e:
        print(f"❌ Error loading ASR model: {e}")
        models['asr_model'] = None

    try:
        print("Loading Whisper model for English...")
        model_name = "openai/whisper-small"
        models['whisper_processor'] = WhisperProcessor.from_pretrained(model_name)
        models['whisper_model'] = WhisperForConditionalGeneration.from_pretrained(model_name).to(device)
        print("βœ… Whisper Model loaded.")
    except Exception as e:
        print(f"❌ Error loading Whisper model: {e}")
        models['whisper_processor'] = None
        models['whisper_model'] = None

    try:
        print("Loading Language ID model (MMS-LID-1024)...")
        lid_model_id = "facebook/mms-lid-1024"
        models['lid_processor'] = Wav2Vec2FeatureExtractor.from_pretrained(lid_model_id)
        models['lid_model'] = AutoModelForAudioClassification.from_pretrained(lid_model_id).to(device)
        models['lid_model'].eval()
        print("βœ… Language ID Model loaded.")
    except Exception as e:
        print(f"❌ Error loading LID model: {e}")
        models['lid_processor'] = None
        models['lid_model'] = None

    try:
        print("Loading Cadence punctuation model...")
        punctuation_model_name = "ai4bharat/Cadence"
        models['punctuation_tokenizer'] = AutoTokenizer.from_pretrained(punctuation_model_name)
        models['punctuation_model'] = Gemma3ForTokenClassification.from_pretrained(
            punctuation_model_name,
            trust_remote_code=True
        ).to(device)
        
        models['punctuation_id2label'] = {
            0: "O", 1: ".", 2: ",", 3: "?", 4: "-", 5: ";", 6: "_", 7: "!", 8: "'", 9: "...",
            10: "\"", 11: "ΰ₯€", 12: "(", 13: ")", 14: ":", 15: "؍", 16: "Ϋ”", 17: "؟",
            18: ".\"", 19: ").", 20: "),", 21: "\",", 22: "\".", 23: "?\"", 24: "\"?",
            25: "ΰ₯€\"", 26: "\"ΰ₯€", 27: "؍", 28: "α±Ύ", 29: "ΰ₯₯", 30: "α±Ύΰ₯€"
        }
        print(f"βœ… Cadence Punctuation Model loaded")
    except Exception as e:
        print(f"❌ Error loading Cadence punctuation model: {e}")
        models['punctuation_tokenizer'] = None
        models['punctuation_model'] = None
        models['punctuation_id2label'] = None

    # Load IndicTrans2 model
    try:
        print("πŸ”„ Loading IndicTrans2 for translation...")
        model_name = "ai4bharat/indictrans2-indic-en-1B"
        
        models['indictrans_tokenizer'] = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
        models['indictrans_model'] = AutoModelForSeq2SeqLM.from_pretrained(
            model_name,
            trust_remote_code=True,
            torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
        ).to(device)
        
        # Use IndicTransToolkit if available, otherwise use basic processor
        if INDICTRANS_TOOLKIT_AVAILABLE:
            models['indic_processor'] = IndicProcessor(inference=True)
            print("βœ… IndicTrans2 loaded with IndicTransToolkit")
        else:
            models['indic_processor'] = BasicIndicProcessor(inference=True)
            print("βœ… IndicTrans2 loaded with basic processor")
            
    except Exception as e:
        print(f"❌ Error loading IndicTrans2 model: {e}")
        models['indictrans_tokenizer'] = None
        models['indictrans_model'] = None
        models['indic_processor'] = None

    return models

def load_qa_system():
    """Load Q&A system with caching using global variables."""
    global qa_system
    
    if qa_system:
        print("βœ… Q&A system already loaded from cache")
        return qa_system
    
    print("πŸš€ Loading Q&A system for the first time...")
    
    try:
        if os.path.exists("cleaned_qa_dataset.xlsx"):
            df = pd.read_excel("cleaned_qa_dataset.xlsx")
            qa_pairs = df[['Question', 'Answer']].dropna().drop_duplicates().reset_index(drop=True)
            questions = qa_pairs['Question'].tolist()
            answers = qa_pairs['Answer'].tolist()
            
            print("Loading sentence transformer model...")
            model = SentenceTransformer('all-mpnet-base-v2')
            
            print("Generating embeddings for questions...")
            question_embeddings = model.encode(questions, convert_to_tensor=True)
            
            qa_system = {
                'model': model,
                'questions': questions,
                'answers': answers,
                'question_embeddings': question_embeddings
            }
            
            print(f"βœ… Q&A system loaded with {len(questions)} questions")
            return qa_system
        else:
            print("⚠️ Q&A dataset not found. Please upload cleaned_qa_dataset.xlsx")
            return None
    except Exception as e:
        print(f"❌ Error loading Q&A system: {e}")
        return None

# --- PROCESSING FUNCTIONS ---
def add_punctuation(text):
    """Add punctuation using the custom bidirectional Gemma3 model"""
    if not text or not models.get('punctuation_model') or not models.get('punctuation_tokenizer'):
        return text

    try:
        inputs = models['punctuation_tokenizer'](
            text,
            return_tensors="pt",
            padding=True,
            truncation=True,
            max_length=512
        )
        inputs = {k: v.to(device) for k, v in inputs.items()}
        input_ids = inputs['input_ids'][0]

        with torch.no_grad():
            outputs = models['punctuation_model'](**inputs)
            predictions_for_sentence = torch.argmax(outputs.logits, dim=-1)[0]

        result_tokens_and_punctuation = []
        all_token_strings = models['punctuation_tokenizer'].convert_ids_to_tokens(input_ids.tolist())

        for i, token_id_value in enumerate(input_ids.tolist()):
            if inputs['attention_mask'][0][i] == 0:
                continue

            current_token_string = all_token_strings[i]
            is_special_token = token_id_value in models['punctuation_tokenizer'].all_special_ids

            if not is_special_token:
                result_tokens_and_punctuation.append(current_token_string)

            predicted_punctuation_id = predictions_for_sentence[i].item()
            punctuation_character = models['punctuation_id2label'].get(predicted_punctuation_id, "O")

            if punctuation_character != "O" and not is_special_token:
                result_tokens_and_punctuation.append(punctuation_character)

        punctuated_text = models['punctuation_tokenizer'].convert_tokens_to_string(result_tokens_and_punctuation)
        return punctuated_text

    except Exception as e:
        print(f"❌ Bidirectional punctuation failed: {e}")
        return text

def detect_language_with_whisper(audio_path):
    """Use Whisper to detect if audio is English or non-English"""
    try:
        if not models.get('whisper_model') or not models.get('whisper_processor'):
            return False, None
            
        print("πŸ” Using Whisper for initial language detection...")
        
        waveform, sr = preprocess_audio(audio_path, target_sr=16000)
        
        input_features = models['whisper_processor'](
            waveform.squeeze(),
            sampling_rate=sr,
            return_tensors="pt"
        ).input_features.to(device)
        
        with torch.no_grad():
            predicted_ids = models['whisper_model'].generate(
                input_features,
                return_dict_in_generate=True,
                output_scores=True
            )
            
            transcription = models['whisper_processor'].batch_decode(
                predicted_ids.sequences, 
                skip_special_tokens=True
            )[0].strip()
            
            english_indicators = len(transcription) > 0 and any(
                word.lower() in transcription.lower() 
                for word in ['the', 'and', 'is', 'to', 'a', 'of', 'for', 'in', 'on', 'with', 'as', 'by']
            )
            
            ascii_ratio = sum(1 for c in transcription if ord(c) < 128) / max(len(transcription), 1)
            is_english = english_indicators and ascii_ratio > 0.7 and len(transcription.split()) > 1
            
            print(f"🎯 Whisper detection result: {'English' if is_english else 'Non-English'}")
            print(f"πŸ“ Whisper transcription: '{transcription}'")
            
            return is_english, transcription if is_english else None
            
    except Exception as e:
        print(f"⚠️ Whisper language detection failed: {e}")
        return False, None

def translate_with_indictrans2(text: str, source_lang: str = "hin_Deva") -> Dict:
    """
    Translate Indic language text to English using IndicTrans2 model.
    """
    try:
        if not models.get('indictrans_model') or not models.get('indictrans_tokenizer') or not models.get('indic_processor'):
            return {
                "success": False,
                "error": "IndicTrans2 model not loaded",
                "translated_text": ""
            }
        
        print(f"πŸ”„ Translating with IndicTrans2: {source_lang} -> eng_Latn")
        
        input_sentences = [text.strip()]
        
        # Preprocess with IndicProcessor
        batch = models['indic_processor'].preprocess_batch(
            input_sentences,
            src_lang=source_lang,
            tgt_lang="eng_Latn"
        )
        
        # Tokenize the sentences and generate input encodings
        inputs = models['indictrans_tokenizer'](
            batch,
            truncation=True,
            padding="longest",
            return_tensors="pt",
            return_attention_mask=True,
        ).to(device)
        
        # Generate translations using the model
        with torch.no_grad():
            generated_tokens = models['indictrans_model'].generate(
                **inputs,
                use_cache=True,
                min_length=0,
                max_length=256,
                num_beams=5,
                num_return_sequences=1,
            )
        
        # Decode the generated tokens into text
        generated_tokens = models['indictrans_tokenizer'].batch_decode(
            generated_tokens,
            skip_special_tokens=True,
            clean_up_tokenization_spaces=True,
        )
        
        # Postprocess the translations
        translations = models['indic_processor'].postprocess_batch(generated_tokens, lang="eng_Latn")
        
        translated_text = translations[0] if translations else ""
        
        return {
            "success": True,
            "translated_text": translated_text,
            "source_lang": source_lang,
            "target_lang": "eng_Latn"
        }
        
    except Exception as e:
        print(f"❌ IndicTrans2 translation failed: {str(e)}")
        return {
            "success": False,
            "error": f"Translation error: {str(e)}",
            "translated_text": ""
        }

def semantic_qa_search(user_question, similarity_threshold=0.3, top_k=3):
    """Perform semantic search on Q&A dataset."""
    if not qa_system:
        return {
            "status": "error",
            "message": "Q&A system not available. Please upload the dataset."
        }
    
    try:
        user_question_embedding = qa_system['model'].encode(user_question, convert_to_tensor=True)
        similarities = util.cos_sim(user_question_embedding, qa_system['question_embeddings'])
        top_results = torch.topk(similarities, k=top_k)
        
        results = []
        for score, idx in zip(top_results.values[0], top_results.indices[0]):
            results.append({
                'similarity_score': score.item(),
                'question': qa_system['questions'][idx],
                'answer': qa_system['answers'][idx],
                'index': idx.item()
            })
        
        if results and results[0]['similarity_score'] >= similarity_threshold:
            formatted_results = []
            for i, result in enumerate(results):
                formatted_results.append({
                    "rank": i + 1,
                    "answer": result['answer'],
                    "matched_question": result['question'],
                    "similarity_score": result['similarity_score'],
                    "confidence": "High" if result['similarity_score'] > 0.7 else "Medium"
                })
            return {
                "status": "success",
                "results": formatted_results
            }
        else:
            formatted_suggestions = []
            for i, result in enumerate(results):
                formatted_suggestions.append({
                    "rank": i + 1,
                    "question": result['question'],
                    "similarity_score": result['similarity_score']
                })
            return {
                "status": "no_match",
                "message": "No highly relevant answer found in the dataset.",
                "suggestions": formatted_suggestions
            }
            
    except Exception as e:
        return {
            "status": "error",
            "message": f"Semantic search failed: {str(e)}"
        }

def transcribe_audio_with_lid(audio_path):
    """Main transcription function with Whisper-first pipeline."""
    if not audio_path:
        return "Please provide an audio file.", "", ""

    try:
        waveform_16k, sr = preprocess_audio(audio_path, target_sr=16000)
    except Exception as e:
        return f"Error loading/preprocessing audio: {e}", "", ""

    try:
        # STEP 1: Use Whisper for initial language detection
        is_english, whisper_transcription = detect_language_with_whisper(audio_path)
        
        if is_english and whisper_transcription:
            # ENGLISH PIPELINE
            print("πŸ‡ΊπŸ‡Έ Processing as English audio...")
            detected_lang_str = "Detected Language: English (Whisper Detection)"
            
            punctuated_transcription = add_punctuation(whisper_transcription)
            print(f"Original Whisper: {whisper_transcription}")
            print(f"With punctuation: {punctuated_transcription}")
            
            translation_result = punctuated_transcription
            
            return (
                detected_lang_str,
                punctuated_transcription,
                translation_result,
            )
        
        else:
            # NON-ENGLISH PIPELINE
            print("🌍 Processing as Non-English audio...")
            
            if not models.get('lid_model') or not models.get('lid_processor'):
                return "Language detection model not available.", "", ""
            
            print("πŸ” Using MMS-LID for detailed language identification...")
            
            inputs = models['lid_processor'](waveform_16k.squeeze(), sampling_rate=16000, return_tensors="pt").to(device)
            with torch.no_grad():
                outputs = models['lid_model'](**inputs)

            logits = outputs[0]
            predicted_lid_id = logits.argmax(-1).item()
            detected_lid_code = models['lid_model'].config.id2label[predicted_lid_id]
            asr_lang_code = LID_TO_ASR_LANG_MAP.get(detected_lid_code)

            if not asr_lang_code:
                detected_lang_str = f"Detected '{detected_lid_code}', which is not supported by the ASR model."
                return detected_lang_str, "N/A", "N/A"

            detected_lang_name = ASR_CODE_TO_NAME.get(asr_lang_code, 'Unknown')
            detected_lang_str = f"Detected Language: {detected_lang_name} ({detected_lid_code})"
            print(detected_lang_str)

            if not models.get('asr_model'):
                return "ASR model not available.", "", ""

            print(f"πŸ”€ Transcribing with IndicConformer ({detected_lang_name})...")
            with torch.no_grad():
                transcription = models['asr_model'](waveform_16k.to(device), asr_lang_code, "rnnt")
            print("βœ… IndicConformer transcription complete.")

            punctuated_transcription = add_punctuation(transcription.strip()) if transcription else ""
            print(f"Original: {transcription}")
            print(f"With punctuation: {punctuated_transcription}")

            # Translation to English using IndicTrans2
            translation_result = ""
            translation_error = ""

            if punctuated_transcription:
                indictrans_lang_code = ASR_TO_INDICTRANS_MAP.get(asr_lang_code)
                if indictrans_lang_code:
                    print(f"πŸ”„ Translating {detected_lang_name} to English with IndicTrans2...")
                    translation_response = translate_with_indictrans2(
                        punctuated_transcription,
                        indictrans_lang_code
                    )

                    if translation_response["success"]:
                        translation_result = translation_response["translated_text"]
                        print("βœ… IndicTrans2 translation complete.")
                    else:
                        translation_error = translation_response["error"]
                        translation_result = "Translation failed"
                        print(f"❌ Translation failed: {translation_error}")
                else:
                    translation_result = "Translation not supported for this language"
                    print(translation_result)
            else:
                translation_result = "No text to translate"

            if translation_error:
                translation_display = f"❌ {translation_result}\nError: {translation_error}"
            else:
                translation_display = translation_result

            return (
                detected_lang_str,
                punctuated_transcription,
                translation_display,
            )

    except Exception as e:
        return f"Error during processing: {str(e)}", "", ""

def process_audio_and_search(audio_path):
    """Process audio and perform semantic search."""
    print(f"--- Processing audio file with Whisper-first pipeline: {audio_path} ---")
    
    detected_language, transcription, translated_text = transcribe_audio_with_lid(audio_path)
    
    if "Error" in detected_language:
        return {
            "status": "audio_processing_failed",
            "error": detected_language
        }

    print("\n--- Performing semantic search on translated text ---")
    semantic_search_result = semantic_qa_search(translated_text)

    return {
        "status": "success",
        "audio_processing": {
            "detected_language": detected_language,
            "transcription": transcription,
            "translated_text": translated_text
        },
        "semantic_search": semantic_search_result
    }

# --- GRADIO INTERFACE ---
def gradio_interface_fn(audio_path):
    """Gradio wrapper function."""
    if not audio_path:
        return "No audio file provided", "", "", "Please upload an audio file."
    
    integrated_result = process_audio_and_search(audio_path)

    detected_language_output = ""
    transcription_output = ""
    translated_text_output = ""
    semantic_search_output_string = ""

    if integrated_result["status"] == "success":
        audio_processing = integrated_result["audio_processing"]
        detected_language_output = audio_processing["detected_language"]
        transcription_output = audio_processing["transcription"]
        translated_text_output = audio_processing["translated_text"]

        semantic_search = integrated_result["semantic_search"]

        if semantic_search["status"] == "success":
            semantic_search_output_string = "--- Top 3 Semantic Search Results ---\n\n"
            for result in semantic_search["results"]:
                semantic_search_output_string += (
                    f"Rank {result['rank']} ({result['confidence']} Confidence, Score: {result['similarity_score']:.3f})\n"
                    f"Matched Question: {result['matched_question']}\n"
                    f"Answer: {result['answer']}\n\n"
                )
        else:
            semantic_search_output_string = f"--- Semantic Search ---\n\n❌ {semantic_search['message']}\n\n"
            if 'suggestions' in semantic_search:
                semantic_search_output_string += "πŸ” Top Suggestions:\n"
                for suggestion in semantic_search["suggestions"]:
                    semantic_search_output_string += (
                        f"- {suggestion['question']} (Score: {suggestion['similarity_score']:.3f})\n"
                    )

    else:
        error_message = integrated_result.get("error", "An unknown error occurred during audio processing.")
        detected_language_output = f"Error: {error_message}"
        transcription_output = "N/A"
        translated_text_output = "N/A"
        semantic_search_output_string = "Semantic search could not be performed due to audio processing error."

    return (detected_language_output, transcription_output, translated_text_output, semantic_search_output_string)

def create_gradio_app():
    """Create the Gradio interface."""
    
    audio_input = gr.Audio(type="filepath", label="Upload Audio File")
    detected_language_output = gr.Textbox(label="Detected Language")
    transcription_output = gr.Textbox(label="Transcription")
    translated_text_output = gr.Textbox(label="Translated Text")
    semantic_search_output = gr.Textbox(label="Semantic Search Results")

    audio_backend_info = ""
    if TORCHCODEC_AVAILABLE:
        audio_backend_info = "🎡 **Audio Backend**: TorchCodec (recommended)"
    elif TORCHAUDIO_AVAILABLE:
        audio_backend_info = "🎡 **Audio Backend**: TorchAudio (legacy with deprecation handling)"
    else:
        audio_backend_info = "🎡 **Audio Backend**: Librosa (fallback)"

    iface = gr.Interface(
        fn=gradio_interface_fn,
        inputs=audio_input,
        outputs=[detected_language_output, transcription_output, translated_text_output, semantic_search_output],
        title="🌾 Multilingual Agricultural Voice Assistant",
        description=f"""
        Upload an audio file in English or any of the 22+ supported Indic languages. 
        The system will:
        1. 🎧 Detect the language automatically
        2. πŸ“ Transcribe the speech with punctuation
        3. 🌍 Translate to English using **IndicTrans2**
        4. πŸ” Find relevant agricultural answers from the knowledge base
        
        **Supported Languages:** English, Hindi, Bengali, Telugu, Tamil, Gujarati, Kannada, Malayalam, Marathi, Punjabi, Odia, Assamese, Urdu, Nepali, Sanskrit, and more!
        
        {audio_backend_info}
        **πŸ”§ Translation**: IndicTrans2 with robust preprocessing
        **⚠️ Note**: Updated for TorchAudio 2.8+ deprecations
        """,
        examples=[],
        theme=gr.themes.Soft(),
        allow_flagging="never",
    )
    
    return iface

# --- MAIN APPLICATION ---
if __name__ == "__main__":
    print("\n" + "="*60)
    print("🌾 MULTILINGUAL AGRICULTURAL VOICE ASSISTANT")
    print("="*60)
    
    if TORCHCODEC_AVAILABLE:
        print("🎡 Audio Backend: TorchCodec (recommended)")
    elif TORCHAUDIO_AVAILABLE:
        print("🎡 Audio Backend: TorchAudio (legacy with deprecation handling)")
    else:
        print("🎡 Audio Backend: Librosa (fallback)")
    
    print("πŸ”§ Translation: IndicTrans2 Model")
    print("⚠️ Updated for TorchAudio 2.8+ deprecations")
    print("🎯 Features available:")
    print("   β€’ Multi-format audio processing (15+ formats)")
    print("   β€’ Whisper-based English detection and transcription")
    print("   β€’ MMS-LID for 22+ Indic language detection")
    print("   β€’ IndicConformer for Indic language ASR")
    print("   β€’ Bidirectional Gemma3 punctuation (31 punctuation types)")
    print("   β€’ IndicTrans2 for professional translation")
    print("   β€’ Semantic Q&A search")
    print("="*60)
    
    print("πŸš€ Loading models...")
    models = load_models()
    qa_system = load_qa_system()
    
    print("πŸŽͺ Launching Gradio interface...")
    app = create_gradio_app()
    app.launch()