Spaces:
Sleeping
Sleeping
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| import torchvision.models as models | |
| import torchvision.transforms as transforms | |
| from torchvision.models.resnet import ResNet50_Weights | |
| from PIL import Image | |
| import numpy as np | |
| import os | |
| import requests | |
| import time | |
| from pathlib import Path | |
| # Check CUDA availability | |
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| print(f"Using device: {device}") | |
| # Constants | |
| MODEL_URLS = { | |
| 'robust_resnet50': 'https://huggingface.co/madrylab/robust-imagenet-models/resolve/main/resnet50_l2_eps3.ckpt', | |
| 'standard_resnet50': 'https://huggingface.co/madrylab/robust-imagenet-models/resolve/main/resnet50_l2_eps0.ckpt' | |
| } | |
| IMAGENET_MEAN = [0.485, 0.456, 0.406] | |
| IMAGENET_STD = [0.229, 0.224, 0.225] | |
| # Default transform | |
| transform = transforms.Compose([ | |
| transforms.Resize(224), | |
| transforms.CenterCrop(224), | |
| transforms.ToTensor(), | |
| ]) | |
| normalize_transform = transforms.Normalize(IMAGENET_MEAN, IMAGENET_STD) | |
| # Get ImageNet labels | |
| def get_imagenet_labels(): | |
| url = "https://raw.githubusercontent.com/anishathalye/imagenet-simple-labels/master/imagenet-simple-labels.json" | |
| response = requests.get(url) | |
| if response.status_code == 200: | |
| return response.json() | |
| else: | |
| raise RuntimeError("Failed to fetch ImageNet labels") | |
| # Download model if needed | |
| def download_model(model_type): | |
| if model_type not in MODEL_URLS or MODEL_URLS[model_type] is None: | |
| return None # Use PyTorch's pretrained model | |
| model_path = Path(f"models/{model_type}.pt") | |
| if not model_path.exists(): | |
| print(f"Downloading {model_type} model...") | |
| url = MODEL_URLS[model_type] | |
| response = requests.get(url, stream=True) | |
| if response.status_code == 200: | |
| with open(model_path, 'wb') as f: | |
| for chunk in response.iter_content(chunk_size=8192): | |
| f.write(chunk) | |
| print(f"Model downloaded and saved to {model_path}") | |
| else: | |
| raise RuntimeError(f"Failed to download model: {response.status_code}") | |
| return model_path | |
| class NormalizeByChannelMeanStd(nn.Module): | |
| def __init__(self, mean, std): | |
| super(NormalizeByChannelMeanStd, self).__init__() | |
| if not isinstance(mean, torch.Tensor): | |
| mean = torch.tensor(mean) | |
| if not isinstance(std, torch.Tensor): | |
| std = torch.tensor(std) | |
| self.register_buffer("mean", mean) | |
| self.register_buffer("std", std) | |
| def forward(self, tensor): | |
| return self.normalize_fn(tensor, self.mean, self.std) | |
| def normalize_fn(self, tensor, mean, std): | |
| """Differentiable version of torchvision.functional.normalize""" | |
| # here we assume the color channel is at dim=1 | |
| mean = mean[None, :, None, None] | |
| std = std[None, :, None, None] | |
| return tensor.sub(mean).div(std) | |
| class InferStep: | |
| def __init__(self, orig_image, eps, step_size): | |
| self.orig_image = orig_image | |
| self.eps = eps | |
| self.step_size = step_size | |
| def project(self, x): | |
| diff = x - self.orig_image | |
| diff = torch.clamp(diff, -self.eps, self.eps) | |
| return torch.clamp(self.orig_image + diff, 0, 1) | |
| def step(self, x, grad): | |
| l = len(x.shape) - 1 | |
| grad_norm = torch.norm(grad.view(grad.shape[0], -1), dim=1).view(-1, *([1]*l)) | |
| scaled_grad = grad / (grad_norm + 1e-10) | |
| return scaled_grad * self.step_size | |
| def get_inference_configs(eps=0.5, n_itr=50): | |
| """Generate inference configuration with customizable parameters.""" | |
| config = { | |
| 'loss_infer': 'IncreaseConfidence', # How to guide the optimization | |
| 'loss_function': 'CE', # Loss function: Cross Entropy | |
| 'n_itr': n_itr, # Number of iterations | |
| 'eps': eps, # Maximum perturbation size | |
| 'step_size': 1, # Step size for each iteration | |
| 'diffusion_noise_ratio': 0.0, # No diffusion noise | |
| 'initial_inference_noise_ratio': 0.0, # No initial noise | |
| 'top_layer': 'all', # Use all layers of the model | |
| 'inference_normalization': 'off', # Apply normalization during inference | |
| 'recognition_normalization': 'off', # Apply normalization during recognition | |
| 'iterations_to_show': [1, 5, 10, 20, 30, 40, 50, n_itr] # Specific iterations to visualize | |
| } | |
| return config | |
| class GenerativeInferenceModel: | |
| def __init__(self): | |
| self.models = {} | |
| self.normalizer = NormalizeByChannelMeanStd(IMAGENET_MEAN, IMAGENET_STD).to(device) | |
| self.labels = get_imagenet_labels() | |
| def verify_model_integrity(self, model, model_type): | |
| """ | |
| Verify model integrity by running a test input through it. | |
| Returns whether the model passes basic integrity check. | |
| """ | |
| try: | |
| print(f"\n=== Running model integrity check for {model_type} ===") | |
| # Create a deterministic test input | |
| test_input = torch.zeros(1, 3, 224, 224) | |
| test_input[0, 0, 100:124, 100:124] = 0.5 # Red square | |
| test_input = test_input.to(model.device if hasattr(model, 'device') else 'cpu') | |
| # Run forward pass | |
| with torch.no_grad(): | |
| output = model(test_input) | |
| # Check output shape | |
| if output.shape != (1, 1000): | |
| print(f"❌ Unexpected output shape: {output.shape}, expected (1, 1000)") | |
| return False | |
| # Get top prediction | |
| probs = torch.nn.functional.softmax(output, dim=1) | |
| confidence, prediction = torch.max(probs, 1) | |
| # Calculate basic statistics on output | |
| mean = output.mean().item() | |
| std = output.std().item() | |
| min_val = output.min().item() | |
| max_val = output.max().item() | |
| print(f"Model integrity check results:") | |
| print(f"- Output shape: {output.shape}") | |
| print(f"- Top prediction: Class {prediction.item()} with {confidence.item()*100:.2f}% confidence") | |
| print(f"- Output statistics: mean={mean:.3f}, std={std:.3f}, min={min_val:.3f}, max={max_val:.3f}") | |
| # Basic sanity checks | |
| if torch.isnan(output).any(): | |
| print("❌ Model produced NaN outputs") | |
| return False | |
| if output.std().item() < 0.1: | |
| print("⚠️ Low output variance, model may not be discriminative") | |
| print("✅ Model passes basic integrity check") | |
| return True | |
| except Exception as e: | |
| print(f"❌ Model integrity check failed with error: {e}") | |
| return False | |
| def load_model(self, model_type): | |
| """Load model from checkpoint or use pretrained model.""" | |
| if model_type in self.models: | |
| return self.models[model_type] | |
| model_path = download_model(model_type) | |
| # Create a sequential model with normalizer and ResNet50 | |
| resnet = models.resnet50() | |
| model = nn.Sequential( | |
| self.normalizer, # Normalizer is part of the model sequence | |
| resnet | |
| ) | |
| # Load the model checkpoint | |
| if model_path: | |
| print(f"Loading {model_type} model from {model_path}...") | |
| try: | |
| checkpoint = torch.load(model_path, map_location=device) | |
| # Print checkpoint structure for better understanding | |
| print("\n=== Analyzing checkpoint structure ===") | |
| if isinstance(checkpoint, dict): | |
| print(f"Checkpoint contains keys: {list(checkpoint.keys())}") | |
| # Examine 'model' structure if it exists | |
| if 'model' in checkpoint and isinstance(checkpoint['model'], dict): | |
| model_dict = checkpoint['model'] | |
| # Get sample of keys to understand structure | |
| first_keys = list(model_dict.keys())[:5] | |
| print(f"'model' contains keys like: {first_keys}") | |
| # Check for common prefixes in the model dict | |
| prefixes = set() | |
| for key in list(model_dict.keys())[:100]: # Check first 100 keys | |
| parts = key.split('.') | |
| if len(parts) > 1: | |
| prefixes.add(parts[0]) | |
| if prefixes: | |
| print(f"Common prefixes in model dict: {prefixes}") | |
| else: | |
| print(f"Checkpoint is not a dictionary, but a {type(checkpoint)}") | |
| # Handle different checkpoint formats | |
| if 'model' in checkpoint: | |
| # Format from madrylab robust models | |
| state_dict = checkpoint['model'] | |
| print("Using 'model' key from checkpoint") | |
| elif 'state_dict' in checkpoint: | |
| state_dict = checkpoint['state_dict'] | |
| print("Using 'state_dict' key from checkpoint") | |
| else: | |
| # Direct state dict | |
| state_dict = checkpoint | |
| print("Using checkpoint directly as state_dict") | |
| # Handle prefix in state dict keys for ResNet part | |
| resnet_state_dict = {} | |
| prefixes_to_try = ['', 'module.', 'model.', 'attacker.model.'] | |
| resnet_keys = set(resnet.state_dict().keys()) | |
| # First check if we can find keys directly in the attacker.model path | |
| print("\n=== Phase 1: Checking for specific model structures ===") | |
| # Check for 'module.model' structure (seen in actual checkpoint) | |
| module_model_keys = [key for key in state_dict.keys() if key.startswith('module.model.')] | |
| if module_model_keys: | |
| print(f"Found 'module.model' structure with {len(module_model_keys)} parameters") | |
| # Extract all parameters from module.model | |
| for source_key, value in state_dict.items(): | |
| if source_key.startswith('module.model.'): | |
| target_key = source_key[len('module.model.'):] | |
| resnet_state_dict[target_key] = value | |
| print(f"Extracted {len(resnet_state_dict)} parameters from module.model") | |
| # Check for 'attacker.model' structure | |
| attacker_model_keys = [key for key in state_dict.keys() if key.startswith('attacker.model.')] | |
| if attacker_model_keys: | |
| print(f"Found 'attacker.model' structure with {len(attacker_model_keys)} parameters") | |
| # Extract all parameters from attacker.model | |
| for source_key, value in state_dict.items(): | |
| if source_key.startswith('attacker.model.'): | |
| target_key = source_key[len('attacker.model.'):] | |
| resnet_state_dict[target_key] = value | |
| print(f"Extracted {len(resnet_state_dict)} parameters from attacker.model") | |
| # Check if 'model' (not attacker.model) exists as a fallback | |
| model_keys = [key for key in state_dict.keys() if key.startswith('model.') and not key.startswith('attacker.model.')] | |
| if model_keys and len(resnet_state_dict) < len(resnet_keys): | |
| print(f"Found additional 'model.' structure with {len(model_keys)} parameters") | |
| # Try to complete missing parameters | |
| for source_key, value in state_dict.items(): | |
| if source_key.startswith('model.'): | |
| target_key = source_key[len('model.'):] | |
| if target_key in resnet_keys and target_key not in resnet_state_dict: | |
| resnet_state_dict[target_key] = value | |
| else: | |
| # Check for other known structures | |
| structure_found = False | |
| # Check for 'model.' prefix | |
| model_keys = [key for key in state_dict.keys() if key.startswith('model.')] | |
| if model_keys: | |
| print(f"Found 'model.' structure with {len(model_keys)} parameters") | |
| for source_key, value in state_dict.items(): | |
| if source_key.startswith('model.'): | |
| target_key = source_key[len('model.'):] | |
| resnet_state_dict[target_key] = value | |
| structure_found = True | |
| # Check for ResNet parameters at the top level | |
| top_level_resnet_keys = 0 | |
| for key in resnet_keys: | |
| if key in state_dict: | |
| top_level_resnet_keys += 1 | |
| if top_level_resnet_keys > 0: | |
| print(f"Found {top_level_resnet_keys} ResNet parameters at top level") | |
| for target_key in resnet_keys: | |
| if target_key in state_dict: | |
| resnet_state_dict[target_key] = state_dict[target_key] | |
| structure_found = True | |
| # If no structure was recognized, try the prefix mapping approach | |
| if not structure_found: | |
| print("No standard model structure found, trying prefix mappings...") | |
| for target_key in resnet_keys: | |
| for prefix in prefixes_to_try: | |
| source_key = prefix + target_key | |
| if source_key in state_dict: | |
| resnet_state_dict[target_key] = state_dict[source_key] | |
| break | |
| # If we still can't find enough keys, try a final approach of removing prefixes | |
| if len(resnet_state_dict) < len(resnet_keys): | |
| print(f"Found only {len(resnet_state_dict)}/{len(resnet_keys)} parameters, trying prefix removal...") | |
| # Track matches found through prefix removal | |
| prefix_matches = {prefix: 0 for prefix in ['module.', 'model.', 'attacker.model.', 'attacker.']} | |
| layer_matches = {} # Track matches by layer type | |
| # Count parameter keys by layer type for analysis | |
| for key in resnet_keys: | |
| layer_name = key.split('.')[0] if '.' in key else key | |
| if layer_name not in layer_matches: | |
| layer_matches[layer_name] = {'total': 0, 'matched': 0} | |
| layer_matches[layer_name]['total'] += 1 | |
| # Try keys with common prefixes | |
| for source_key, value in state_dict.items(): | |
| # Skip if already found | |
| target_key = source_key | |
| matched_prefix = None | |
| # Try removing various prefixes | |
| for prefix in ['module.', 'model.', 'attacker.model.', 'attacker.']: | |
| if source_key.startswith(prefix): | |
| target_key = source_key[len(prefix):] | |
| matched_prefix = prefix | |
| break | |
| # If the target key is in the ResNet keys, add it to the state dict | |
| if target_key in resnet_keys and target_key not in resnet_state_dict: | |
| resnet_state_dict[target_key] = value | |
| # Update match statistics | |
| if matched_prefix: | |
| prefix_matches[matched_prefix] += 1 | |
| # Update layer matches | |
| layer_name = target_key.split('.')[0] if '.' in target_key else target_key | |
| if layer_name in layer_matches: | |
| layer_matches[layer_name]['matched'] += 1 | |
| # Print detailed prefix removal statistics | |
| print("\n=== Prefix Removal Statistics ===") | |
| total_matches = sum(prefix_matches.values()) | |
| print(f"Total parameters matched through prefix removal: {total_matches}/{len(resnet_keys)} ({(total_matches/len(resnet_keys))*100:.1f}%)") | |
| # Show matches by prefix | |
| print("\nMatches by prefix:") | |
| for prefix, count in sorted(prefix_matches.items(), key=lambda x: x[1], reverse=True): | |
| if count > 0: | |
| print(f" {prefix}: {count} parameters") | |
| # Show matches by layer type | |
| print("\nMatches by layer type:") | |
| for layer, stats in sorted(layer_matches.items(), key=lambda x: x[1]['total'], reverse=True): | |
| match_percent = (stats['matched'] / stats['total']) * 100 if stats['total'] > 0 else 0 | |
| print(f" {layer}: {stats['matched']}/{stats['total']} ({match_percent:.1f}%)") | |
| # Check for specific important layers (conv1, layer1, etc.) | |
| critical_layers = ['conv1', 'bn1', 'layer1', 'layer2', 'layer3', 'layer4', 'fc'] | |
| print("\nStatus of critical layers:") | |
| for layer in critical_layers: | |
| if layer in layer_matches: | |
| match_percent = (layer_matches[layer]['matched'] / layer_matches[layer]['total']) * 100 | |
| status = "✅ COMPLETE" if layer_matches[layer]['matched'] == layer_matches[layer]['total'] else "⚠️ INCOMPLETE" | |
| print(f" {layer}: {layer_matches[layer]['matched']}/{layer_matches[layer]['total']} ({match_percent:.1f}%) - {status}") | |
| else: | |
| print(f" {layer}: Not found in model") | |
| # Load the ResNet state dict | |
| if resnet_state_dict: | |
| try: | |
| # Use strict=False to allow missing keys | |
| result = resnet.load_state_dict(resnet_state_dict, strict=False) | |
| missing_keys, unexpected_keys = result | |
| # Generate detailed information with better formatting | |
| loading_report = [] | |
| loading_report.append(f"\n===== MODEL LOADING REPORT: {model_type} =====") | |
| loading_report.append(f"Total parameters in checkpoint: {len(resnet_state_dict):,}") | |
| loading_report.append(f"Total parameters in model: {len(resnet.state_dict()):,}") | |
| loading_report.append(f"Missing keys: {len(missing_keys):,} parameters") | |
| loading_report.append(f"Unexpected keys: {len(unexpected_keys):,} parameters") | |
| # Calculate percentage of parameters loaded | |
| loaded_keys = set(resnet_state_dict.keys()) - set(unexpected_keys) | |
| loaded_percent = (len(loaded_keys) / len(resnet.state_dict())) * 100 | |
| # Determine loading success status | |
| if loaded_percent >= 99.5: | |
| status = "✅ COMPLETE - All important parameters loaded" | |
| elif loaded_percent >= 90: | |
| status = "🟡 PARTIAL - Most parameters loaded, should still function" | |
| elif loaded_percent >= 50: | |
| status = "⚠️ INCOMPLETE - Many parameters missing, may not function properly" | |
| else: | |
| status = "❌ FAILED - Critical parameters missing, will not function properly" | |
| loading_report.append(f"Successfully loaded: {len(loaded_keys):,} parameters ({loaded_percent:.1f}%)") | |
| loading_report.append(f"Loading status: {status}") | |
| # If loading is severely incomplete, fall back to PyTorch's pretrained model | |
| if loaded_percent < 50: | |
| loading_report.append("\n⚠️ WARNING: Loading from checkpoint is too incomplete.") | |
| loading_report.append("⚠️ Falling back to PyTorch's pretrained model to avoid broken inference.") | |
| # Create a new ResNet model with pretrained weights | |
| resnet = models.resnet50(weights=ResNet50_Weights.IMAGENET1K_V1) | |
| model = nn.Sequential(self.normalizer, resnet) | |
| loading_report.append("✅ Successfully loaded PyTorch's pretrained ResNet50 model") | |
| # Show missing keys by layer type | |
| if missing_keys: | |
| loading_report.append("\nMissing keys by layer type:") | |
| layer_types = {} | |
| for key in missing_keys: | |
| # Extract layer type (e.g., 'conv', 'bn', 'layer1', etc.) | |
| parts = key.split('.') | |
| if len(parts) > 0: | |
| layer_type = parts[0] | |
| if layer_type not in layer_types: | |
| layer_types[layer_type] = 0 | |
| layer_types[layer_type] += 1 | |
| # Add counts by layer type | |
| for layer_type, count in sorted(layer_types.items(), key=lambda x: x[1], reverse=True): | |
| loading_report.append(f" {layer_type}: {count:,} parameters") | |
| loading_report.append("\nFirst 10 missing keys:") | |
| for i, key in enumerate(sorted(missing_keys)[:10]): | |
| loading_report.append(f" {i+1}. {key}") | |
| # Show unexpected keys if any | |
| if unexpected_keys: | |
| loading_report.append("\nFirst 10 unexpected keys:") | |
| for i, key in enumerate(sorted(unexpected_keys)[:10]): | |
| loading_report.append(f" {i+1}. {key}") | |
| loading_report.append("========================================") | |
| # Convert report to string and print it | |
| report_text = "\n".join(loading_report) | |
| print(report_text) | |
| # Also save to a file for reference | |
| os.makedirs("logs", exist_ok=True) | |
| with open(f"logs/model_loading_{model_type}.log", "w") as f: | |
| f.write(report_text) | |
| # Look for normalizer parameters as well | |
| if any(key.startswith('attacker.normalize.') for key in state_dict.keys()): | |
| norm_state_dict = {} | |
| for key, value in state_dict.items(): | |
| if key.startswith('attacker.normalize.'): | |
| norm_key = key[len('attacker.normalize.'):] | |
| norm_state_dict[norm_key] = value | |
| if norm_state_dict: | |
| try: | |
| self.normalizer.load_state_dict(norm_state_dict, strict=False) | |
| print("Successfully loaded normalizer parameters") | |
| except Exception as e: | |
| print(f"Warning: Could not load normalizer parameters: {e}") | |
| except Exception as e: | |
| print(f"Warning: Error loading ResNet parameters: {e}") | |
| # Fall back to loading without normalizer | |
| model = resnet # Use just the ResNet model without normalizer | |
| except Exception as e: | |
| print(f"Error loading model checkpoint: {e}") | |
| # Fallback to PyTorch's pretrained model | |
| print("Falling back to PyTorch's pretrained model") | |
| resnet = models.resnet50(weights=ResNet50_Weights.IMAGENET1K_V1) | |
| model = nn.Sequential(self.normalizer, resnet) | |
| else: | |
| # Fallback to PyTorch's pretrained model | |
| print("No checkpoint available, using PyTorch's pretrained model") | |
| resnet = models.resnet50(weights=ResNet50_Weights.IMAGENET1K_V1) | |
| model = nn.Sequential(self.normalizer, resnet) | |
| model = model.to(device) | |
| model.eval() # Set to evaluation mode | |
| # Verify model integrity | |
| self.verify_model_integrity(model, model_type) | |
| # Store the model for future use | |
| self.models[model_type] = model | |
| return model | |
| def inference(self, image, model_type, config): | |
| """Run generative inference on the image.""" | |
| # Load model if not already loaded | |
| model = self.load_model(model_type) | |
| # Check if image is a file path | |
| if isinstance(image, str): | |
| if os.path.exists(image): | |
| image = Image.open(image).convert('RGB') | |
| else: | |
| raise ValueError(f"Image path does not exist: {image}") | |
| # Prepare image tensor | |
| image_tensor = transform(image).unsqueeze(0).to(device) | |
| image_tensor.requires_grad = True | |
| # Check model structure | |
| is_sequential = isinstance(model, nn.Sequential) | |
| # Get original predictions | |
| with torch.no_grad(): | |
| # If the model is sequential with a normalizer, skip the normalization step | |
| if is_sequential and isinstance(model[0], NormalizeByChannelMeanStd): | |
| print("Model is sequential with normalization") | |
| output_original = model(image_tensor) # Model includes normalization | |
| # Get the core model part (typically at index 1 in Sequential) | |
| core_model = model[1] | |
| else: | |
| print("Model is not sequential with normalization") | |
| # Use manual normalization for non-sequential models | |
| normalized_tensor = normalize_transform(image_tensor) | |
| output_original = model(normalized_tensor) | |
| core_model = model | |
| probs_orig = F.softmax(output_original, dim=1) | |
| conf_orig, classes_orig = torch.max(probs_orig, 1) | |
| # Get least confident classes | |
| _, least_confident_classes = torch.topk(probs_orig, k=100, largest=False) | |
| # Initialize inference step | |
| infer_step = InferStep(image_tensor, config['eps'], config['step_size']) | |
| # Storage for inference steps | |
| # Create a new tensor that requires gradients | |
| x = image_tensor.clone().detach().requires_grad_(True) | |
| all_steps = [image_tensor[0].detach().cpu()] | |
| # Main inference loop | |
| for i in range(config['n_itr']): | |
| # Reset gradients | |
| x.grad = None | |
| # Forward pass | |
| if is_sequential and isinstance(model[0], NormalizeByChannelMeanStd): | |
| output = model(x) # Model includes normalization | |
| else: | |
| # Use manual normalization for non-sequential models | |
| normalized_x = normalize_transform(x) | |
| output = model(normalized_x) | |
| # Calculate loss to maximize confidence for least confident classes | |
| try: | |
| # Get the least confident classes | |
| num_classes = min(10, least_confident_classes.size(1)) | |
| target_classes = least_confident_classes[0, :num_classes] | |
| # Create a combined loss (avoid accumulating in a loop) | |
| targets = torch.tensor([idx.item() for idx in target_classes], device=device) | |
| # Method 1: Use a single combined loss | |
| loss = 0 | |
| for target in targets: | |
| # Create one-hot target | |
| one_hot = torch.zeros_like(output) | |
| one_hot[0, target] = 1 | |
| # Use negative loss to maximize confidence | |
| loss = loss + F.mse_loss(F.softmax(output, dim=1), one_hot) | |
| # Method 2: Try direct gradient calculation | |
| # Instead of loss.backward(), which might be failing | |
| grad = torch.autograd.grad(loss, x, retain_graph=True)[0] | |
| if grad is None: | |
| print("Warning: Direct gradient calculation failed") | |
| # Fall back to random perturbation | |
| random_noise = (torch.rand_like(x) - 0.5) * 2 * config['step_size'] | |
| x = x + random_noise | |
| else: | |
| # Update image with gradient | |
| step = infer_step.step(x, grad) | |
| x = x + step | |
| x = infer_step.project(x) | |
| except Exception as e: | |
| print(f"Error in gradient calculation: {e}") | |
| # Fall back to random perturbation | |
| random_noise = (torch.rand_like(x) - 0.5) * 2 * config['step_size'] | |
| x = x + random_noise | |
| x = infer_step.project(x) | |
| # Store step if in iterations_to_show | |
| if i+1 in config['iterations_to_show'] or i+1 == config['n_itr']: | |
| all_steps.append(x[0].detach().cpu()) | |
| # Print some info about the inference | |
| with torch.no_grad(): | |
| if is_sequential and isinstance(model[0], NormalizeByChannelMeanStd): | |
| final_output = model(x) | |
| else: | |
| normalized_x = normalize_transform(x) | |
| final_output = model(normalized_x) | |
| final_probs = F.softmax(final_output, dim=1) | |
| final_conf, final_classes = torch.max(final_probs, 1) | |
| print(f"Original top class: {classes_orig.item()} ({conf_orig.item():.4f})") | |
| print(f"Final top class: {final_classes.item()} ({final_conf.item():.4f})") | |
| # Return final image and all stored steps | |
| return x[0].detach().cpu(), all_steps | |
| # Utility function to show inference steps | |
| def show_inference_steps(steps, figsize=(15, 10)): | |
| import matplotlib.pyplot as plt | |
| n_steps = len(steps) | |
| fig, axes = plt.subplots(1, n_steps, figsize=figsize) | |
| for i, step_img in enumerate(steps): | |
| img = step_img.permute(1, 2, 0).numpy() | |
| axes[i].imshow(img) | |
| axes[i].set_title(f"Step {i}") | |
| axes[i].axis('off') | |
| plt.tight_layout() | |
| return fig |