Spaces:
Sleeping
Sleeping
File size: 17,130 Bytes
7245cc5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 |
# Motion Metrics
from concurrent.futures import ProcessPoolExecutor, as_completed
import numpy as np
np.float = np.float64
np.int = np.int_
import os
from cdfvd import fvd
from skimage.metrics import structural_similarity
import torch
import lpips
#from DISTS_pytorch import DISTS
#import colour as c
#from torchmetrics.image.fid import FrechetInceptionDistance
import torch.nn.functional as F
from epe_metric import compute_bidirectional_epe as epe
import pdb
import multiprocessing
import cv2
import glob
# init
# dataDir = 'BaistCroppedOutput' # 'dataGoPro' #
# gtDir = 'gt_subset' #'GT' #
# methodDirs = ['deblurred', 'animation-from-blur', ] #['Favaro','MotionETR','Ours','GOPROGeneralize'] #
# fType = '.mp4'
# depth = 8
# resFile = './resultsBaist20250521.npy'#resultsGoPro20250520.npy'#
# patchDim = 32 #64 #
# pixMax = 1.0
# nMets = 7 # new results: scoreFVD, scorePWPSNR, scoreEPE, scorePatchSSIM, scorePatchLPIPS, scorePSNR
# compute = True # if False, load previously computed
# eps = 1e-8
dataDir = 'GOPROResultsImages' # 'dataBaist' #
gtDir = 'GT' #'gt' #
methodDirs = ['Jin','MotionETR','Ours'] #'GOPROGeneralize',# ['animation-from-blur'] #
depth = 8
resFile = 'resultsGoPro20250521.npy'# './resultsBaist20250521.npy'#
patchDim = 40 #32 #
pixMax = 1.0
nMets = 7 # new results: scoreFVD, scorePWPSNR, scoreEPE, scorePatchSSIM, scorePatchLPIPS, scorePSNR
compute = False # if False, load previously computed
eps = 1e-8
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Use 'spawn' to avoid CUDA context issues
multiprocessing.freeze_support() # on Windows
multiprocessing.set_start_method('spawn', force=True)
def read_pngs_to_array(path):
"""Read all PNGs in `path`, sort them by filename, convert BGR→RGB, and stack into an np.ndarray."""
return np.stack([
cv2.imread(f, cv2.IMREAD_UNCHANGED)[..., ::-1]
for f in sorted(glob.glob(f"{path}/*.png"))
])
def compute_method(results_local, methodDir, files, countMethod):
fnLPIPS = lpips.LPIPS(net='alex').to(device)
#fnDISTS = DISTS().to(device)
fnFVD = fvd.cdfvd(model='videomae', device=device)
countFile = -1
for file in files:
countFile+=1
# pull frames from MP4
pathMethod = os.path.join(dataDir, methodDir, file)
framesMethod = np.clip(read_pngs_to_array(pathMethod).astype(np.float32) / (2**depth-1),0,1)
pathGT = os.path.join(dataDir, gtDir, file)
framesGT = np.clip(read_pngs_to_array(pathGT).astype(np.float32) / (2**depth-1),0,1)
#make sure the GT and method have the same shape
assert framesGT.shape == framesMethod.shape, f"GT shape {framesGT.shape} does not match method shape {framesMethod.shape} for file {file}"
# video metrics
# vmaf
#scoreVMAF = callVMAF(pathGT, pathMethod)
# epe - we have to change to tensors here
framesMethodTensor = torch.from_numpy(framesMethod)
framesGTtensor = torch.from_numpy(framesGT)
scoreEPE = epe(framesMethodTensor[0,:,:,:], framesMethodTensor[-1,:,:,:], framesGTtensor[0,:,:,:], framesGTtensor[-1,:,:,:], per_pixel_mode=True).cpu().detach().numpy()
# motion blur baseline
blurryGT = np.mean(framesGT ** 2.2,axis=0) ** (1/2.2)
blurryMethod = np.mean(framesMethod ** 2.2,axis=0) ** (1/2.2)
# MSE -> PSNR
mapBlurryMSE = (blurryGT - blurryMethod)**2
scoreBlurryMSE = np.mean(mapBlurryMSE)
scoreBlurryPSNR = (10 * np.log10(pixMax**2 / scoreBlurryMSE))
# fvd
#scoreFVD = fnFVD.compute_fvd(real_videos=(np.expand_dims(framesGT, axis=0)*(2**depth-1)).astype(np.uint8), fake_videos=(np.expand_dims(framesMethod, axis=0)*(2**depth-1)).astype(np.uint8))
framesGTfvd = np.expand_dims((framesGT * (2**depth-1)).astype(np.uint8), axis=0)
fnFVD.add_real_stats(framesGTfvd)
framesMethodFVD = np.expand_dims((framesMethod * (2**depth-1)).astype(np.uint8), axis=0)
fnFVD.add_fake_stats(framesMethodFVD)
# loop directions
framesMSE = np.stack((framesGT,framesGT)) # pre allocate array for directional PSNR maps
countDirect = -1
for direction in directions:
countDirect = countDirect+1
order = direction
# loop frames + image level metrics
countFrames = -1
for i in order:
countFrames+=1
frameMethod = framesMethod[i,:,:,:] # method frames can be re-ordered
frameGT = framesGT[countFrames,:,:,:]
#assert patch size is divisible by image size
rows, cols, ch = frameGT.shape
assert rows % patchDim == 0, f"rows {rows} is not divisible by patchDim {patchDim}"
assert cols % patchDim == 0, f"cols {cols} is not divisible by patchDim {patchDim}"
rPatch = np.ceil(rows/patchDim)
cPatch = np.ceil(cols/patchDim)
# LPIPS
#pdb.set_trace()
methodTensor = (torch.from_numpy(np.moveaxis(frameMethod, -1, 0)).unsqueeze(0) * 2 - 1).to(device)
gtTensor = (torch.from_numpy(np.moveaxis(frameGT, -1, 0)).unsqueeze(0) * 2 - 1).to(device)
#scoreLPIPS = fnLPIPS(gtTensor, methodTensor).squeeze(0,1,2).cpu().detach().numpy()[0]
# FID
#fnFID.update((gtTensor * (2**depth - 1)).to(torch.uint8), real=True)
#fnFID.update((methodTensor * (2**depth - 1)).to(torch.uint8), real=False)
# DISTS
#scoreDISTS = fnDISTS(gtTensor.to(torch.float), methodTensor.to(torch.float), require_grad=True, batch_average=True).cpu().detach().numpy()
# compute ssim
#scoreSSIM = structural_similarity(frameGT, frameMethod, data_range=pixMax, channel_axis=2)
# compute DE 2000
#frameMethodXYZ = c.RGB_to_XYZ(frameMethod, c.models.RGB_COLOURSPACE_sRGB, apply_cctf_decoding=True)
#frameMethodLAB = c.XYZ_to_Lab(frameMethodXYZ)
#frameGTXYZ = c.RGB_to_XYZ(frameGT, c.models.RGB_COLOURSPACE_sRGB, apply_cctf_decoding=True)
#frameGTLAB = c.XYZ_to_Lab(frameGTXYZ)
#mapDE2000 = c.delta_E(frameGTLAB, frameMethodLAB, method='CIE 2000')
#scoreDE2000 = np.mean(mapDE2000)
# MSE
mapMSE = (frameGT - frameMethod)**2
scoreMSE = np.mean(mapMSE)
# PSNR
framesMSE[countDirect,countFrames,:,:,:] = mapMSE
#framesPSNR[countDirect,countFrames,:,:,:] = np.clip((10 * np.log10(pixMax**2 / np.clip(mapMSE,a_min=1e-10,a_max=None))),0,100)
scorePSNR = (10 * np.log10(pixMax**2 / scoreMSE))
#for l in range(ch):
# channel-wise metrics
#chanFrameMethod = frameMethod[:,:,l]
#chanFrameGT = frameGT[:,:,l]
# loop patches rows
for j in range(int(rPatch)):
# loop patches cols + patch level metrics
for k in range(int(cPatch)):
startR = j*patchDim
startC = k*patchDim
endR = j*patchDim+patchDim
endC = k*patchDim+patchDim
if endR > rows:
endR = rows
else:
pass
if endC > cols:
endC = cols
else:
pass
# patch metrics
#patchMSE = np.mean(mapMSE[startR:endR,startC:endC,:])
#scorePatchPSNR = np.clip((10 * np.log10(pixMax**2 / patchMSE)),0,100)
if dataDir == 'BaistCroppedOutput':
patchGtTensor = F.interpolate(gtTensor[:,:,startR:endR,startC:endC], scale_factor=2.0, mode='bilinear', align_corners=False)
patchMethodTensor = F.interpolate(methodTensor[:,:,startR:endR,startC:endC], scale_factor=2.0, mode='bilinear', align_corners=False)
scorePatchLPIPS = fnLPIPS(patchGtTensor, patchMethodTensor).squeeze(0,1,2).cpu().detach().numpy()[0]
else:
scorePatchLPIPS = fnLPIPS(gtTensor[:,:,startR:endR,startC:endC], methodTensor[:,:,startR:endR,startC:endC]).squeeze(0,1,2).cpu().detach().numpy()[0]
scorePatchSSIM = structural_similarity(frameGT[startR:endR,startC:endC,:], frameMethod[startR:endR,startC:endC,:], data_range=pixMax, channel_axis=2)
#scorePatchDISTS = fnDISTS(gtTensor[:,:,startR:endR,startC:endC].to(torch.float), methodTensor[:,:,startR:endR,startC:endC].to(torch.float), require_grad=True, batch_average=True).cpu().detach().numpy()
#scorePatchDE2000 = np.mean(mapDE2000[startR:endR,startC:endC])
# i: frame number, j: patch row, k: patch col
#results[countMethod,countFile,countDirect,i,j,k,3:] = [scoreEPE, scoreBlurryPSNR, scoreLPIPS, scoreDISTS, scoreSSIM, scoreDE2000, scorePSNR, scorePatchPSNR, scorePatchSSIM, scorePatchLPIPS, scorePatchDISTS, scorePatchDE2000]
results_local[countMethod,countFile,countDirect,i,j,k,2:] = [scoreEPE, scoreBlurryPSNR, scorePatchSSIM, scorePatchLPIPS, scorePSNR]
print('Method: ', methodDir, ' File: ', file, ' Frame: ', str(i), ' PSNR: ', scorePSNR, end='\r')
#print('VMAF: ', str(scoreVMAF), ' FVD: ', str(scoreFVD), ' LPIPS: ', str(scoreLPIPS), ' FID: ', str(scoreFID), ' DISTS: ', str(scoreDISTS), ' SSIM: ', str(scoreSSIM), ' DE2000: ', str(scoreDE2000), ' PSNR: ', str(scorePSNR), ' Patch PSNR: ', str(scorePatchPSNR), end='\r')
#pdb.set_trace()
scorePWPSNR = (10 * np.log10(pixMax**2 / np.mean(np.min(np.mean(framesMSE, axis=(1)),axis=0)))) # take max pixel wise PSNR per direction, average over image dims
#print('Method: ', methodDir, ' File: ', file, ' Frame: ', str(i), ' PWPSNR: ', scorePWPSNR, end='\n')
#scorePWPSNR = np.clip((10 * np.log10(pixMax**2 / np.mean(np.min(framesPSNR, axis=0),axis=(1,2,3)))),0,100) # take max pixel wise PSNR per direction, average over image dims
results_local[countMethod,countFile,:,:,:,:,1] = np.tile(scorePWPSNR, results_local.shape[2:-1])#np.broadcast_to(scorePWPSNR[:, np.newaxis, np.newaxis], results.shape[3:-1])
np.save(resFile, results_local) # save part of the way through the loop ..
#scoreFID = fnFID.compute().cpu().detach().numpy()
#fnFID.reset()
#results[countMethod,:,:,:,:,:,0] = np.tile(scoreFID, results.shape[1:-1])
scoreFVD = fnFVD.compute_fvd_from_stats()
fnFVD.empty_real_stats()
fnFVD.empty_fake_stats()
results_local[countMethod,:,:,:,:,:,0] = np.tile(scoreFVD, results_local.shape[1:-1])
print('Results computed .. analyzing ..')
return results_local
# init results matrix
path = os.path.join(dataDir, gtDir)
clipDirs = [name for name in os.listdir(path) if os.path.isdir(os.path.join(path, name))]
files = []
if dataDir == 'BaistCroppedOutput':
extraFknDir = 'blur'
else:
extraFknDir = ''
for clipDir in clipDirs:
path = os.path.join(dataDir, gtDir, clipDir, extraFknDir)
files = files + [os.path.join(clipDir,extraFknDir,name) for name in os.listdir(path)]
files = sorted(files)
path = os.path.join(dataDir, methodDirs[0], files[0])
testFileGT = read_pngs_to_array(path)
frams,rows,cols,ch = testFileGT.shape
framRange = [i for i in range(frams)]
directions = [framRange, framRange[::-1]]
#loop through all methods and make sure they all have the same directory structure and same number of files
for methodDir in methodDirs:
path = os.path.join(dataDir, methodDir)
clipDirs = [name for name in os.listdir(path) if os.path.isdir(os.path.join(path, name))]
filesMethod = []
for clipDir in clipDirs:
path = os.path.join(dataDir, methodDir, clipDir, extraFknDir)
filesMethod = filesMethod + [os.path.join(clipDir,extraFknDir,name) for name in os.listdir(path)]
filesMethod = sorted(filesMethod)
print('Method: ', methodDir, ' Number of files: ', len(filesMethod))
assert len(files) == len(filesMethod), f"Number of files in {methodDir} does not match GT number of files"
assert files == filesMethod, f"Files in {methodDir} do not match GT files"
def main():
results = np.zeros((len(methodDirs),len(files),len(directions),frams,int(np.ceil(rows/patchDim)),int(np.ceil(cols/patchDim)),nMets))
if compute:
# loop methods + compute dataset level metrics (after nested for loops)
import multiprocessing as mp
ctx = mp.get_context('spawn')
with ProcessPoolExecutor(mp_context=ctx, max_workers=len(methodDirs)) as executor:
# submit one job per method
futures = {
executor.submit(compute_method, np.copy(results), md, files, idx): idx
for idx, md in enumerate(methodDirs)
}
# collect and merge results as they finish
for fut in as_completed(futures):
idx = futures[fut]
res_local = fut.result()
results[idx] = res_local[idx]
else:
results = np.load(resFile)
np.save(resFile, results)
# analyze
# new results: scoreFID, scoreFVD, scorePWPSNR, scoreEPE, scoreLPIPS, scoreDISTS, scoreSSIM, scoreDE2000, scorePSNR, scorePatchPSNR, scorePatchSSIM, scorePatchLPIPS, scorePatchDISTS, scorePatchDE2000
upMetrics = [1,3,4,6]
# 0508 results: scoreFID, scoreFVD, scoreLPIPS, scoreDISTS, scoreSSIM, scoreDE2000, scorePSNR, scorePatchPSNR, scorePatchSSIM, scorePatchLPIPS, scorePatchDISTS, scorePatchDE2000
#upMetrics = [4,6,7,8] # PSNR, SSIM, Patch PSNR, Patch SSIM
print("Results shape 1: ", results.shape)
forwardBackwardResults = np.mean(results,axis=(3))
#print("Results shape 2: ", forwardResults.shape)
maxDirResults = np.max(forwardBackwardResults,axis=(2))
minDirResults = np.min(forwardBackwardResults,axis=(2))
bestDirResults = minDirResults
#pdb.set_trace()
bestDirResults[:,:,:,:,upMetrics] = maxDirResults[:,:,:,:,upMetrics]
import pdb
#pdb.set_trace()
meanResults = bestDirResults.mean(axis=(1, 2, 3)) # Shape becomes (3, 6)
meanResultsT = meanResults.T
'''
maxDirResults = np.max(results,axis=2)
minDirResults = np.min(results,axis=2)
bestDirResults = minDirResults
bestDirResults[:,:,:,:,:,upMetrics] = maxDirResults[:,:,:,:,:,upMetrics]
meanResults = bestDirResults.mean(axis=(1, 2, 3, 4)) # Shape becomes (3, 6)
meanResultsT = meanResults.T
'''
#
#meanResults = forwardResults.mean(axis=(1, 2, 3, 4)) # Shape becomes (3, 6)
#meanResultsT = meanResults.T
# print latex table
method_labels = methodDirs
# results 0508: scoreLPIPS, scoreDISTS, scoreSSIM, scoreDE2000, scorePSNR, scorePatchPSNR, scorePatchSSIM, scorePatchLPIPS, scorePatchDISTS, scoreFID, scoreFVD
# metric_labels = ["FID $\downarrow$","FVD $\downarrow$","LPIPS $\downarrow$", "DISTS $\downarrow$", "SSIM $\downarrow$", "DE2000 $\downarrow$", "PSNR $\downarrow$", "Patch PSNR $\downarrow$", "Patch SSIM $\downarrow$", "Patch LPIPS $\downarrow$", "Patch DISTS $\downarrow$", "Patch DE2000 $\downarrow$"]
# results 0517:
# metric_labels = ["FID $\downarrow$","FVD $\downarrow$","PWPSNR $\downarrow$","EPE $\downarrow$","BlurryPSNR $\downarrow$", "LPIPS $\downarrow$", "DISTS $\downarrow$", "SSIM $\downarrow$", "DE2000 $\downarrow$", "PSNR $\downarrow$", "Patch PSNR $\downarrow$", "Patch SSIM $\downarrow$", "Patch LPIPS $\downarrow$", "Patch DISTS $\downarrow$", "Patch DE2000 $\downarrow$"]
# results 0518:
metric_labels = ["FVD $\downarrow$","PWPSNR $\downarrow$","EPE $\downarrow$","BlurryPSNR $\downarrow$","Patch SSIM $\downarrow$","Patch LPIPS $\downarrow$", "PSNR $\downarrow$"]
# appropriate for results 0507
#metric_labels = ["FID $\downarrow$", "FVD $\downarrow$", "LPIPS $\downarrow$", "DISTS $\downarrow$", "SSIM $\downarrow$", "DE2000 $\downarrow$", "PSNR $\downarrow$"]
latex_table = "\\begin{tabular}{l" + "c" * len(method_labels) + "}\n"
latex_table += "Metric & " + " & ".join(method_labels) + " \\\\\n"
latex_table += "\\hline\n"
for metric, row in zip(metric_labels, meanResultsT):
row_values = " & ".join(f"{v:.4f}" for v in row)
latex_table += f"{metric} & {row_values} \\\\\n"
latex_table += "\\end{tabular}"
print(latex_table)
if __name__ == '__main__':
main()
|