Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
==========================================================
|
| 3 |
+
Gradio demo to Plot multi-class SGD on the iris dataset
|
| 4 |
+
==========================================================
|
| 5 |
+
|
| 6 |
+
Plot decision surface of multi-class SGD on iris dataset.
|
| 7 |
+
The hyperplanes corresponding to the three one-versus-all (OVA) classifiers
|
| 8 |
+
are represented by the dashed lines.
|
| 9 |
+
|
| 10 |
+
Created by Syed Affan <saffand03@gmail.com>
|
| 11 |
+
|
| 12 |
+
"""
|
| 13 |
+
import gradio as gr
|
| 14 |
+
import numpy as np
|
| 15 |
+
import matplotlib.pyplot as plt
|
| 16 |
+
from sklearn import datasets
|
| 17 |
+
from sklearn.linear_model import SGDClassifier
|
| 18 |
+
from sklearn.inspection import DecisionBoundaryDisplay
|
| 19 |
+
import matplotlib.cm
|
| 20 |
+
|
| 21 |
+
def make_plot(alpha,max_iter,Standardize):
|
| 22 |
+
# import some data to play with
|
| 23 |
+
iris = datasets.load_iris()
|
| 24 |
+
fig = plt.figure()
|
| 25 |
+
|
| 26 |
+
# we only take the first two features. We could
|
| 27 |
+
# avoid this ugly slicing by using a two-dim dataset
|
| 28 |
+
X = iris.data[:, :2]
|
| 29 |
+
y = iris.target
|
| 30 |
+
colors = "bry"
|
| 31 |
+
|
| 32 |
+
# shuffle
|
| 33 |
+
idx = np.arange(X.shape[0])
|
| 34 |
+
np.random.seed(13)
|
| 35 |
+
np.random.shuffle(idx)
|
| 36 |
+
X = X[idx]
|
| 37 |
+
y = y[idx]
|
| 38 |
+
|
| 39 |
+
# standardize
|
| 40 |
+
if Standardize:
|
| 41 |
+
mean = X.mean(axis=0)
|
| 42 |
+
std = X.std(axis=0)
|
| 43 |
+
X = (X - mean) / std
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
clf = SGDClassifier(alpha=alpha, max_iter=max_iter).fit(X, y)
|
| 47 |
+
accuracy = clf.score(X,y)
|
| 48 |
+
acc = f'## The Accuracy on the entire dataset: {accuracy}'
|
| 49 |
+
ax = plt.gca()
|
| 50 |
+
DecisionBoundaryDisplay.from_estimator(
|
| 51 |
+
clf,
|
| 52 |
+
X,
|
| 53 |
+
cmap=matplotlib.cm.Paired,
|
| 54 |
+
ax=ax,
|
| 55 |
+
response_method="predict",
|
| 56 |
+
xlabel=iris.feature_names[0],
|
| 57 |
+
ylabel=iris.feature_names[1],
|
| 58 |
+
)
|
| 59 |
+
plt.axis("tight")
|
| 60 |
+
|
| 61 |
+
# Plot also the training points
|
| 62 |
+
for i, color in zip(clf.classes_, colors):
|
| 63 |
+
idx = np.where(y == i)
|
| 64 |
+
plt.scatter(
|
| 65 |
+
X[idx, 0],
|
| 66 |
+
X[idx, 1],
|
| 67 |
+
c=color,
|
| 68 |
+
label=iris.target_names[i],
|
| 69 |
+
cmap=matplotlib.cm.Paired,
|
| 70 |
+
edgecolor="black",
|
| 71 |
+
s=20,
|
| 72 |
+
)
|
| 73 |
+
plt.title("Decision surface of multi-class SGD")
|
| 74 |
+
plt.axis("tight")
|
| 75 |
+
|
| 76 |
+
# Plot the three one-against-all classifiers
|
| 77 |
+
xmin, xmax = plt.xlim()
|
| 78 |
+
ymin, ymax = plt.ylim()
|
| 79 |
+
coef = clf.coef_
|
| 80 |
+
intercept = clf.intercept_
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
def plot_hyperplane(c, color):
|
| 84 |
+
def line(x0):
|
| 85 |
+
return (-(x0 * coef[c, 0]) - intercept[c]) / coef[c, 1]
|
| 86 |
+
|
| 87 |
+
plt.plot([xmin, xmax], [line(xmin), line(xmax)], ls="--", color=color)
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
for i, color in zip(clf.classes_, colors):
|
| 91 |
+
plot_hyperplane(i, color)
|
| 92 |
+
plt.legend()
|
| 93 |
+
|
| 94 |
+
return fig,acc
|
| 95 |
+
|
| 96 |
+
title = "Plot multi-class SGD on the iris dataset"
|
| 97 |
+
|
| 98 |
+
model_card = f"""
|
| 99 |
+
## Description
|
| 100 |
+
Plot decision surface of multi-class SGD on iris dataset.
|
| 101 |
+
The hyperplanes corresponding to the three one-versus-all (OVA) classifiers are represented by the dashed lines.
|
| 102 |
+
## Dataset
|
| 103 |
+
Iris Dataset
|
| 104 |
+
"""
|
| 105 |
+
|
| 106 |
+
with gr.Blocks(title=title) as demo:
|
| 107 |
+
gr.Markdown('''
|
| 108 |
+
<div>
|
| 109 |
+
<h1 style='text-align: center'>⚒ Plot multi-class SGD on iris dataset 🛠</h1>
|
| 110 |
+
</div>
|
| 111 |
+
''')
|
| 112 |
+
|
| 113 |
+
gr.Markdown(model_card)
|
| 114 |
+
d0 = gr.Slider(0.001,5,step=0.001,value=0.001,label='alpha')
|
| 115 |
+
d1 = gr.Slider(1,1000,step=10,value=100,label='max_iter')
|
| 116 |
+
d2 = gr.Checkbox(value=True,label='Standardize')
|
| 117 |
+
|
| 118 |
+
btn =gr.Button(value='Submit')
|
| 119 |
+
btn.click(make_plot,inputs=[d0,d1,d2],outputs=[gr.Plot(),gr.Markdown()])
|
| 120 |
+
|
| 121 |
+
demo.launch()
|