Spaces:
Build error
Build error
| import gradio as gr | |
| import numpy as np | |
| import time | |
| import matplotlib.pyplot as plt | |
| from sklearn.datasets import load_iris | |
| from sklearn.decomposition import PCA, IncrementalPCA | |
| theme = gr.themes.Monochrome( | |
| primary_hue="indigo", | |
| secondary_hue="blue", | |
| neutral_hue="slate", | |
| ) | |
| model_card = f""" | |
| ## Description | |
| **Incremental principal component analysis (IPCA)** is a suitable alternative to **Principal component analysis (PCA)** when the dataset to be analyzed is too large to fit in memory. | |
| **IPCA** generates a low-rank representation of the input data utilizing a fixed amount of memory that is not reliant on the number of input data samples. | |
| In this demo, you can play around with different ``number of components`` and ``number of samples`` to explore the performance of IPCA and PCA, including a comparison of their respective outputs and running times. | |
| **Note**: Incremental PCA is comparatively slower to regular PCA, as it processes partial data sets sequentially. | |
| ## Dataset | |
| Iris dataset | |
| """ | |
| iris = load_iris() | |
| X = iris.data | |
| y = iris.target | |
| def plot_pca(n_components, batch_size): | |
| # Create linkage matrix and then plot the dendrogram | |
| colors = ["navy", "turquoise", "darkorange"] | |
| ipca = IncrementalPCA(n_components=n_components, batch_size=batch_size) | |
| t1 = time.time() | |
| X_ipca = ipca.fit_transform(X) | |
| ipca_time = time.time() - t1 | |
| pca = PCA(n_components=n_components) | |
| t2 = time.time() | |
| X_pca = pca.fit_transform(X) | |
| pca_time = time.time() - t2 | |
| fig1, axes1 = plt.subplots() | |
| for color, i, target_name in zip(colors, [0, 1, 2], iris.target_names): | |
| axes1.scatter( | |
| X_ipca[y == i, 0], | |
| X_ipca[y == i, 1], | |
| color=color, | |
| lw=2, | |
| label=target_name, | |
| ) | |
| err = np.abs(np.abs(X_pca) - np.abs(X_ipca)).mean() | |
| axes1.set_title(f"Incremental PCA of iris dataset") | |
| axes1.axis([-4, 4, -1.5, 1.5]) | |
| axes1.legend(loc="best", shadow=False, scatterpoints=1) | |
| fig2, axes2 = plt.subplots() | |
| for color, i, target_name in zip(colors, [0, 1, 2], iris.target_names): | |
| axes2.scatter( | |
| X_pca[y == i, 0], | |
| X_pca[y == i, 1], | |
| color=color, | |
| lw=2, | |
| label=target_name, | |
| ) | |
| axes2.set_title("PCA of iris dataset") | |
| axes2.axis([-4, 4, -1.5, 1.5]) | |
| axes2.legend(loc="best", shadow=False, scatterpoints=1) | |
| text = f"PCA runing time: {pca_time:.6f} seconds. Incremental PCA runing time: {ipca_time:.6f} seconds. Mean absolute unsigned error: {err*100:.6f}%" | |
| return fig1, fig2, text | |
| with gr.Blocks(theme=theme) as demo: | |
| gr.Markdown(''' | |
| <div> | |
| <h1 style='text-align: center'>Incremental PCA</h1> | |
| </div> | |
| ''') | |
| gr.Markdown(model_card) | |
| gr.Markdown("Author: <a href=\"https://huggingface.co/vumichien\">Vu Minh Chien</a>. Based on the example from <a href=\"https://scikit-learn.org/stable/auto_examples/decomposition/plot_incremental_pca.html#sphx-glr-auto-examples-decomposition-plot-incremental-pca-py\">scikit-learn</a>") | |
| n_components = gr.Slider(minimum=2, maximum=4, step=1, value=2, label="Number of components to keep") | |
| batch_size = gr.Slider(minimum=10, maximum=50, step=10, value=10, label="The number of samples to use for each batch") | |
| with gr.Row(): | |
| with gr.Column(): | |
| plot_1 = gr.Plot(label="Incremental PCA") | |
| with gr.Column(): | |
| plot_2 = gr.Plot(label="PCA") | |
| with gr.Row(): | |
| resutls = gr.Textbox(label="Results") | |
| n_components.change(fn=plot_pca, inputs=[n_components, batch_size], outputs=[plot_1, plot_2, resutls]) | |
| batch_size.change(fn=plot_pca, inputs=[n_components, batch_size], outputs=[plot_1, plot_2, resutls]) | |
| demo.launch() |