import os from huggingface_hub import hf_hub_download, list_repo_files from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline import gradio as gr MODEL_NAME = "Orion-zhen/Qwen2.5-7B-Instruct-Uncensored" MODEL_DIR = "./Qwen2.5-7B-Instruct-Uncensored" # Step 1: সমস্ত ফাইলের লিস্ট নিয়ে ডাউনলোড if not os.path.exists(MODEL_DIR): os.makedirs(MODEL_DIR, exist_ok=True) print("মডেল ডাউনলোড হচ্ছে hf_hub_download দিয়ে...") # রেপোসিটরির সব ফাইলের লিস্ট repo_files = list_repo_files(MODEL_NAME) for file_name in repo_files: print(f"ডাউনলোড হচ্ছে: {file_name}") hf_hub_download(repo_id=MODEL_NAME, filename=file_name, cache_dir=MODEL_DIR) # Step 2: Tokenizer এবং Model লোড tokenizer = AutoTokenizer.from_pretrained(MODEL_DIR) model = AutoModelForCausalLM.from_pretrained(MODEL_DIR, device_map="auto") # Step 3: Pipeline তৈরি text_generator = pipeline("text-generation", model=model, tokenizer=tokenizer) # Step 4: Gradio UI def generate_text(prompt): outputs = text_generator(prompt, max_new_tokens=200, do_sample=True, temperature=0.7) return outputs[0]['generated_text'] with gr.Blocks() as demo: gr.Markdown("# Orion-zhen/Qwen2.5-7B-Instruct-Uncensored Inference") prompt_input = gr.Textbox(label="Prompt", lines=3) output_text = gr.Textbox(label="Generated Text", lines=10) submit_btn = gr.Button("Generate") submit_btn.click(generate_text, inputs=prompt_input, outputs=output_text) demo.launch()