Spaces:
Sleeping
Sleeping
| import datasets | |
| import numpy as np | |
| import scipy.spatial | |
| import scipy.special | |
| import spaces | |
| from sentence_transformers import CrossEncoder, SentenceTransformer | |
| from table import BASE_REPO_ID | |
| ds = datasets.load_dataset(BASE_REPO_ID, split="train") | |
| ds = ds.rename_column("submission_number", "paper_id") | |
| ds.add_faiss_index(column="embedding") | |
| model = SentenceTransformer("all-MiniLM-L6-v2") | |
| reranker = CrossEncoder("cross-encoder/ms-marco-MiniLM-L-6-v2") | |
| def semantic_search( | |
| query: str, candidate_pool_size: int = 300, score_threshold: float = 0.5 | |
| ) -> tuple[list[int], list[float]]: | |
| query_vec = model.encode(query) | |
| _, retrieved_data = ds.get_nearest_examples("embedding", query_vec, k=candidate_pool_size) | |
| rerank_inputs = [ | |
| [query, f"{title}\n{abstract}"] | |
| for title, abstract in zip(retrieved_data["title"], retrieved_data["abstract"], strict=True) | |
| ] | |
| rerank_scores = reranker.predict(rerank_inputs) | |
| sorted_indices = np.argsort(rerank_scores)[::-1] | |
| paper_ids = [] | |
| scores = [] | |
| for i in sorted_indices: | |
| score = float(scipy.special.expit(rerank_scores[i])) | |
| if score < score_threshold: | |
| break | |
| paper_ids.append(retrieved_data["paper_id"][i]) | |
| scores.append(score) | |
| return paper_ids, scores | |